2,591 research outputs found

    A Relational Political Science

    Get PDF

    Empirical Challenges to Studying Terrorism and Homicide

    Get PDF
    The study of terrorism has bridged multiple scholarly domains. Terrorism is discussed within political science as a form of political violence (Crenshaw 1981) related to civil conflict (Findley and Young 2012) and interstate war (Findley, Piazza, and Young 2012). Terrorism is studied within criminology as a form of criminal violence along with homicide and assault, and under political crime as a form of oppositional action put alongside sedition and treason (J.I. Ross 2006). In scholarly work, it is becoming increasingly more common to see works on terrorism connected to political violence (e.g., Thomas 2014) or political crimes (e.g., Chermak, Freilich, and Suttmoeller 2013), but less so with other forms of crime (e.g., Mullins and Young 2012). How is studying homicide different from studying terrorism? And how is it similar? The term terrorism evokes images of 9/11, the Boston Bombing, or other grizzly attacks committed for an ideological reason. Conversely, the term homicide brings to mind shootings on the streets or in one’s home, generally for personal reasons. At first glance, these two concepts may not appear connected to one another. LaFree and Dugan (2004), for instance, explore the relationship between terrorism and crime, including homicide, and suggest a long list of affinities and differences. While their investigation is theoretical, this chapter provides an empirical approach. We use standard modeling approaches from the homicide and terrorism literatures to predict each outcome cross‐nationally. Potentially surprising to some who feel these are wholly distinct phenomena, we find more similarities than differences between the factors that predict each. In what follows, we discuss the issues with defining, operationalizing, and measuring both terrorism and homicide, and challenges with finding valid and reliable cross‐national data on both. We discuss the cross‐national study of both terrorism and homicide, including their similarities, differences, and what lessons could be learned from the study of other cross‐national forms of political violence. We then use cross‐national data to see if models of homicide can predict terrorist attacks and vice versa. We conclude with a discussion of the replication results, research that blends violence types, and future research directions

    Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells.

    Get PDF
    A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 μm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells. © 2018 Joseph et al

    Nuclear Matrix Protein 4 Is a Novel Regulator of Ribosome Biogenesis and Controls the Unfolded Protein Response via Repression of Gadd34 Expression

    Get PDF
    The unfolded protein response (UPR) maintains protein homeostasis by governing the processing capacity of the endoplasmic reticulum (ER) to manage ER client loads; however, key regulators within the UPR remain to be identified. Activation of the UPR sensor PERK (EIFAK3/PEK) results in the phosphorylation of the α subunit of eIF2 (eIF2α-P), which represses translation initiation and reduces influx of newly synthesized proteins into the overloaded ER. As part of this adaptive response, eIF2α-P also induces a feedback mechanism through enhanced transcriptional and translational expression of Gadd34 (Ppp1r15A),which targets type 1 protein phosphatase for dephosphorylation of eIF2α-P to restore protein synthesis. Here we describe a novel mechanism by which Gadd34 expression is regulated through the activity of the zinc finger transcription factor NMP4 (ZNF384, CIZ). NMP4 functions to suppress bone anabolism, and we suggest that this occurs due to decreased protein synthesis of factors involved in bone formation through NMP4-mediated dampening of Gadd34 and c-Myc expression. Loss of Nmp4 resulted in an increase in c-Myc and Gadd34 expression that facilitated enhanced ribosome biogenesis and global protein synthesis. Importantly, protein synthesis was sustained during pharmacological induction of the UPR through a mechanism suggested to involve GADD34-mediated dephosphorylation of eIF2α-P. Sustained protein synthesis sensitized cells to pharmacological induction of the UPR, and the observed decrease in cell viability was restored upon inhibition of GADD34 activity. We conclude that NMP4 is a key regulator of ribosome biogenesis and the UPR, which together play a central role in determining cell viability during endoplasmic reticulum stress

    Continuous Melting of a "Partially Pinned" Two-Dimensional Vortex Lattice in a Square Array of Pinning Centers

    Get PDF
    The structure and equilibrium properties of a two-dimensional system of superconducting vortices in a periodic pinning potential with square symmetry are studied numerically. For a range of the strength of the pinning potential, the low-temperature crystalline state exhibits only one of the two basic periodicities (in the xx- and yy-directions) of the pinning potential. This ``partially pinned'' solid undergoes a continuous melting transition to a weakly modulated liquid as the temperature is increased. A spin model, constructed using symmetry arguments, is shown to reproduce the critical behavior at this transition.Comment: 5 pages, 4 figure

    Assessment of cefazolin and cefuroxime tissue penetration by using a continuous intravenous infusion.

    Get PDF
    A continuous intravenous infusion was used to assess the tissue penetration of cefazolin (14 subjects) and cefuroxime (15 subjects) in orthopedic surgery patients. Subjects were randomly assigned to receive a continuous intravenous infusion of cefazolin (mean, 178.6 mg/h) orcefuroxime (mean, 330.0 mg/h) at a rate estimated to achieve a target steady-state total concentration of 50 micrograms/ml in serum. The infusion was initiated 12 to 14 h before surgery, and blood and muscle tissue samples were collected intraoperatively at the times of incision and wound closure. Although there was a significant difference between the free concentrations ofcefazolin (at incision, 9.3 micrograms/ml; at closure, 9.2 micrograms/ml) and cefuroxime in serum (at incision, 26.9 micrograms/ml; at closure, 31.8 micrograms/ml), there was no difference in the total concentrations in muscle at either surgical incision (cefazolin, 6.1 micrograms/g; cefuroxime, 5.6 micrograms/g) or wound closure (cefazolin, 7.7 micrograms/g; cefuroxime, 7.4 micrograms/g). There was a significant correlation between the pooled free serum and total muscle concentrations for cefazolin (P = 0.001); however, there was no correlation between these variables with the pooledcefuroxime data (P = 0.403). These findings indicate that the free drug concentration in serum alone is not consistently predictive of the total concentration of cephalosporin in muscle

    Elimination of Metastatic Melanoma Using Gold Nanoshell-Enabled Photothermal Therapy and Adoptive T Cell Transfer

    Get PDF
    Ablative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses. Unexpectedly, however, these immunomodulatory effects were not beneficial to overall antitumor immunity. We found that PTT promoted the infiltration of secondary tumor sites by CD11b+Ly-6G/C+ myeloid-derived suppressor cells, consequently failing to slow the growth of poorly immunogenic B16-F10 tumors and enhancing the growth of distant lung metastases. To exploit the beneficial effects of PTT activity against local tumors and on antitumor immunity whilst avoiding the adverse consequences, we adoptively transferred gp100-specific pmel T cells following PTT. The combination of local control by PTT and systemic antitumor immune reactivity provided by adoptively transferred T cells prevented primary tumor recurrence post-ablation, inhibited tumor growth at distant sites, and abrogated the outgrowth of lung metastases. Hence, the combination of PTT and systemic immunotherapy prevented the adverse effects of PTT on metastatic tumor growth and optimized overall tumor control

    T cells enhance gold nanoparticle delivery to tumors in vivo

    Get PDF
    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation
    corecore