10,299 research outputs found
Initial Experiences of Building Secure Access to Patient Confidential Data via the Internet
A project to enable health care professionals (GPs, practice nurses and diabetes nurse specialists) to access, via the Internet, confidential patient data held on a secondary care (hospital) diabetes information system, has been implemented. We describe the application that we chose to distribute (a diabetes register); the security mechanisms we used to protect the data (a public key infrastructure with strong encryption and digitally signed messages, plus a firewall); the reasons for the implementation decisions we made; the validation testing that we performed and the preliminary results of the pilot implementation
Craniofacial diversification in the domestic pigeon and the evolution of the avian skull.
A central question in evolutionary developmental biology is how highly conserved developmental systems can generate the remarkable phenotypic diversity observed among distantly related species. In part, this paradox reflects our limited knowledge about the potential for species to both respond to selection and generate novel variation. Consequently, the developmental links between small-scale microevolutionary variations within populations to larger macroevolutionary patterns among species remain unbridged. Domesticated species, such as the pigeon, are unique resources for addressing this question, because a history of strong artificial selection has significantly increased morphological diversity, offering a direct comparison of the developmental potential of a single species to broader evolutionary patterns. Here, we demonstrate that patterns of variation and covariation within and between the face and braincase in domesticated breeds of the pigeon are predictive of avian cranial evolution. These results indicate that selection on variation generated by a conserved developmental system is sufficient to explain the evolution of crania as different in shape as the albatross or eagle, parakeet or hummingbird. These 'rules' of cranio-facial variation are a common pattern in the evolution of a broad diversity of vertebrate species and may ultimately reflect structural limitations of a shared embryonic bauplan on functional variation
Bioactive Food Components and Cancer-Specific Metabonomic Profiles
Cancer cells possess unique metabolic signatures compared to normal cells, including shifts in aerobic glycolysis, glutaminolysis, and de novo biosynthesis of macromolecules. Targeting these changes with agents (drugs and dietary components) has been employed as strategies to reduce the complications associated with tumorigenesis. This paper highlights the ability of several food components to suppress tumor-specific metabolic pathways, including increased expression of glucose transporters, oncogenic tyrosine kinase, tumor-specific M2-type pyruvate kinase, and fatty acid synthase, and the detection of such effects using various metabonomic technologies, including liquid chromatography/mass spectrometry (LC/MS) and stable isotope-labeled MS. Stable isotope-mediated tracing technologies offer exciting opportunities for defining specific target(s) for food components. Exposures, especially during the early transition phase from normal to cancer, are critical for the translation of knowledge about food components into effective prevention strategies. Although appropriate dietary exposures needed to alter cellular metabolism remain inconsistent and/or ill-defined, validated metabonomic biomarkers for dietary components hold promise for establishing effective strategies for cancer prevention
Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network
The UK is one of several countries around the world that has enacted legislation to reduce its greenhouse gas emissions. In this study, we present top-down emissions of methane (CH4) and nitrous oxide (N2O) for the UK and Ireland over the period August 2012 to August 2014. These emissions were inferred using measurements from a network of four sites around the two countries. We used a hierarchical Bayesian inverse framework to infer fluxes as well as a set of covariance parameters that describe uncertainties in the system. We inferred average UK total emissions of 2.09 (1.65–2.67) Tg yr−1 CH4 and 0.101 (0.068–0.150) Tg yr−1 N2O and found our derived UK estimates to be generally lower than the a priori emissions, which consisted primarily of anthropogenic sources and with a smaller contribution from natural sources. We used sectoral distributions from the UK National Atmospheric Emissions Inventory (NAEI) to determine whether these discrepancies can be attributed to specific source sectors. Because of the distinct distributions of the two dominant CH4 emissions sectors in the UK, agriculture and waste, we found that the inventory may be overestimated in agricultural CH4 emissions. We found that annual mean N2O emissions were consistent with both the prior and the anthropogenic inventory but we derived a significant seasonal cycle in emissions. This seasonality is likely due to seasonality in fertilizer application and in environmental drivers such as temperature and rainfall, which are not reflected in the annual resolution inventory. Through the hierarchical Bayesian inverse framework, we quantified uncertainty covariance parameters and emphasized their importance for high-resolution emissions estimation. We inferred average model errors of approximately 20 and 0.4 ppb and correlation timescales of 1.0 (0.72–1.43) and 2.6 (1.9–20 3.9) days for CH4 and N2O, respectively. These errors are a combination of transport model errors as well as errors due to unresolved emissions processes in the inventory. We found the largest CH4 errors at the Tacolneston station in eastern England, which may be due to sporadic emissions from landfills and offshore gas in the North Sea
The Principal Axis of the Virgo Cluster
Using accurate distances to individual Virgo cluster galaxies obtained by the
method of Surface Brightness Fluctuations, we show that Virgo's brightest
ellipticals have a remarkably collinear arrangement in three dimensions. This
axis, which is inclined by 10 to 15 degrees from the line of sight, can be
traced to even larger scales where it appears to join a filamentary bridge of
galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of
individual Virgo ellipticals also show some tendency to be aligned with the
cluster axis, as does the jet of the supergiant elliptical M87. These results
suggest that the formation of the Virgo cluster, and its brightest member
galaxies, have been driven by infall of material along the Virgo-A1367
filament.Comment: 8 pages, 4 figures, accepted for publication in ApJ Letter
- …