3 research outputs found

    Convolutional Neural Network for Segmentation and Classification of Glaucoma

    Get PDF
    Glaucoma is an eye disease that is caused by elevated intraocular pressure and commonly leads to optic nerve damage. Thanks to its vital role in transmitting visual signals from the eye to the brain, the optic nerve is essential for maintaining good and clear vision. Glaucoma is considered one of the leading causes of blindness. Accordingly, the earlier doctors can diagnose and detect the disease, the more feasible its treatment becomes. Aiming to facilitate this task, this study proposes a method for detecting diseases by analyzing images of the interior of the eye using a convolutional neural network. This method consists of segmentation based on a modified U-Net architecture and classification using the DenseNet-201 technique. The proposed model utilized the DRISHTI-GS and RIM-ONE datasets to evaluate glaucoma images. These datasets served as valuable sources of diverse and representative glaucoma-related images, enabling a thorough evaluation of the model’s performance. Finally, the results were highly promising after subjecting the model to a thorough evaluation process. The segmentation accuracy reached 96.65%, while the classification accuracy reached 96.90%. This means that the model excelled in accurately delineating and isolating the relevant regions of interest within the eye images, such as the optical disc and optical cup, which are crucial for diagnosing glaucoma

    Vigilance towards the use of artificial intelligence applications for breast cancer screening and early diagnosis

    No full text
    Breast cancer is a real public health problem in Morocco. It is the cause of a significant number of deaths caused by late diagnosis. Mammography plays an essential role in the detection of breast cancer and in the early management of its treatment. Despite the existence of screening programs, there are still high rates of false positives and false negatives. Indeed, women were called back for additional diagnoses based on suspicious results that eventually led to cancer. Artificial intelligence (AI) algorithms represent a promising solution to improve the accuracy of digital mammography offering, on the one hand, the possibility of better cancer detection, and, on the other hand, improved efficiency for radiologists for good decision-making. In this work, through a review of the literature on the tools used to evaluate the performance of AI systems dedicated to early detection and diagnosis of breast cancer. We set out to answer the following questions: Is the ethics relating to patient data during the development phase of this software is respected? Do these tools take into consideration the specificities of the field? What about the specification, accuracy and limitations of these applications? At the end, we show through this work recommendations to adapt these evaluation tools of AI applications for breast cancer screening for an optimized and rational consideration of the principle of health vigilance and compliance with the regulatory standards in force governing this field
    corecore