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PAPER

Convolutional Neural Network for Segmentation  
and Classification of Glaucoma

ABSTRACT
Glaucoma is an eye disease that is caused by elevated intraocular pressure and commonly 
leads to optic nerve damage. Thanks to its vital role in transmitting visual signals from the eye 
to the brain, the optic nerve is essential for maintaining good and clear vision. Glaucoma is 
considered one of the leading causes of blindness. Accordingly, the earlier doctors can diag-
nose and detect the disease, the more feasible its treatment becomes. Aiming to facilitate this 
task, this study proposes a method for detecting diseases by analyzing images of the interior 
of the eye using a convolutional neural network. This method consists of segmentation based 
on a modified U-Net architecture and classification using the DenseNet-201 technique. The 
proposed model utilized the DRISHTI-GS and RIM-ONE datasets to evaluate glaucoma images. 
These datasets served as valuable sources of diverse and representative glaucoma-related 
images, enabling a thorough evaluation of the model’s performance. Finally, the results were 
highly promising after subjecting the model to a thorough evaluation process. The segmenta-
tion accuracy reached 96.65%, while the classification accuracy reached 96.90%. This means 
that the model excelled in accurately delineating and isolating the relevant regions of interest 
within the eye images, such as the optical disc and optical cup, which are crucial for diagnos-
ing glaucoma.

KEYWORDS
glaucoma, U-net model, convolutional neural network (CNN), deep learning, image 
segmentation, image classification

1	 INTRODUCTION

Glaucoma is a term used to describe a group of eye diseases that affect the optic 
nerve, located at the back of the eye. The optic nerve is responsible for transmitting 
information from the eye to the brain [1]. When this nerve is damaged, the ability 
to see can be lost.

The World Health Organization (WHO) estimates that glaucoma affects approxi-
mately 60 million people worldwide. Approximately 4.5 million people are blinded 
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due to the primary type of glaucoma. This accounts for approximately 12 percent 
of the total number of blind individuals globally [2]. It is the second-most common 
cause of blindness and vision loss worldwide and the leading cause of permanent 
vision loss. However, the disease can be cured, and blindness can be prevented 
through early diagnosis. While the disease can affect children and adults at an early 
age, the risk is higher for the elderly (with an increasing risk after age 40), uncon-
trolled diabetics, and individuals with a family history of glaucoma. By and large, 
cases of glaucoma fall into two major classes: open-angle glaucoma, which is more 
common than closed-angle glaucoma. In the case of open-angle glaucoma, the eye’s 
drainage channels are gradually obstructed by minuscule micro-deposits over a 
period of months or even years. This type of glaucoma is referred to as open-angle 
glaucoma because the drainage channels appear clear when examined with a slit 
lamp at high magnification. However, the drainage that flows through these chan-
nels is not functioning properly [3]. The intraocular pressure slowly rises as fluid 
production remains normal while drainage is hindered. However, in angle closure 
glaucoma, the eye’s drainage channels are blocked due to a significant narrowing 
of the angle between the iris and the cornea. This type of glaucoma is referred to 
as angle closure because the obstruction of the canals is easily observed during 
examination [4]. It can occur either suddenly or slowly. If clogging occurs suddenly, 
the pressure in the eye will increase rapidly. If the clog occurs slowly, the pressure 
inside the eye gradually returns. When a patient is suspected of having glaucoma, 
the doctor will conduct a comprehensive examination [5]. The comprehensive glau-
coma examination consists of five steps: eye pressure measurement, optic nerve 
assessment, field of vision test, ophthalmoscopy, and keratometry. The intraocular 
pressure is measured using a painless instrument called a tonometer. Normal eye 
pressure ranges between 11 and 21 mmHg. In most cases, an eye pressure above  
21 mmHg is considered higher than normal [6].

All of these methods involve manual processes, which can be time-consuming 
and may potentially lead to decisions that are influenced by the biases of multi-
ple specialists. As a result, a computer-aided diagnostic (CAD) tool is required as a 
supplementary tool for doctors. This CAD system consists of three main steps: pre- 
processing, segmentation, and classification. These steps are used to classify fundus 
eye images as either “glaucoma” or “normal.” The doctor focuses on aligning the 
fundus camera with the pupil. When he presses the shutter button, the flash goes off 
and creates an image of the inner surface of the eye. The image consists of the optic 
cup, optic disc, and retinal vessels, as illustrated in Figure 1.

Fig. 1. Retinal fundus image
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The optic disc is the beginning of the optic nerve and the point of the main blood 
vessels that supply the retina. The optic cup is the variable-diameter depression 
located on the optic disc [3].

In this CAD system, pre-processing is used to remove outliers from input fundus 
images. In the segmentation section, a modified U-Net model is employed. For the 
final stage, a pre-trained transfer learning model, DenseNet-201, is used for feature 
extraction in conjunction with a deep convolutional neural network (CNN). The 
classification task utilizes a CNN approach, with the ultimate outcome indicating 
whether or not glaucoma is present in the diagnosis [7].

The remaining sections of this paper are structured as follows: Section 2 provides 
extensive details about previous works related to object segmentation and classifica-
tion for glaucoma. Section 3 outlines the details of the materials and methods used in 
this study. Section 4 presents an analysis of the comparative results obtained in this 
work. Finally, Section 5 presents the conclusion.

2	 RELATED	WORKS

Several research models have been reported by various authors for glaucoma 
detection, segmentation, and classification. Each model employs a different algo-
rithm from the others. Most of these models are based on deep learning, exhibiting 
varying degrees of performance evaluation. In many research studies, the primary 
approach for diagnosing glaucoma involves capturing fundus images using digital 
imaging equipment, which has emerged as the most widely adopted method. The 
captured images were subsequently preprocessed to normalize any irregularities.

Signh et al. [8] developed a novel pre-processing model using Gaussian filter-
ing. The authors utilized an optimized CNN framework to classify various features, 
including morphological features such as disc area, cup area, and blood vessels, as 
well as non-morphological features like color, shape, and modified LBP. Their pro-
posed method demonstrated successful validation in detecting glaucoma, while also 
assisting in removal of noise from the images.

Veena et al. [9] implemented a framework using the CNN model to segment the 
optic cup and optic disc in order to determine the cup-to-disc ratio (CDR). The model 
is designed to provide a diagnosis of glaucoma, achieving a high accuracy rate of 
98% for optic disc segmentation and 97% for optic cup segmentation.

Rutuja Shinde [10] presented a model that utilized the U-Net architecture for  
segmenting the optic disc and optic cup. Furthermore, classifiers such as support 
vector machines (SVM), neural networks, and Adaboost were utilized. This model 
demonstrated exceptional performance, surpassing other approaches in terms of 
accuracy and effectiveness.

Pal and Chatterjee [11] applied morphology-based operations and a histogram 
equalizer to enhance the edges of the optic disc in an RGB (red, green, blue) image. 
The edge of the optic disc was identified using Canny’s edge detector and then seg-
mented using the fill algorithm.

Jun et al. [12] introduced a method for glaucoma detection based on the transfer-
able ranking CNN (TRk-CNN) using DenseNet. The fundus images are classified as 
normal, glaucoma suspect, and glaucomatous eyes. TRk-CNN achieved high values 
in terms of accuracy, sensitivity, and specificity.

Soltani et al. [13] attempted to segment the optic disk using the Laplace, Sobel, and 
Canny edge detection methods. They used the Canny detector because it provided 
the best performance in detection and localizing of the disk, while the Laplacian 
operator had lower accuracy.

https://online-journals.org/index.php/i-joe
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Hatanaka et al. [14] attempted to identify the optic disc by analyzing the shape 
and color of the fundus image. The P-tile threshold algorithm was implemented on 
the three channels of an RGB image. An optical disk estimate was obtained by merg-
ing the three images, and the Canny edge detector was applied. The vertical CDR was 
used to diagnose glaucoma.

The following section describes the utilization of various state-of-the-art methods 
for comparison with the proposed approach.

3	 MATERIAL	AND	METHODS

3.1	 Database

A collection of two datasets has been used for the purpose of this paper.
Diabetic retinopathy image dataset for segmentation, grading, and screening 

(DRISHTI-GS): This dataset contains 101 retinal fundus images acquired using a 
retinal fundus camera. Out of these images, 30 are classified as normal, and 71 are 
classified as glaucomatous. The reference standard for evaluating the implemented 
methods consists of labeling the images as “normal” or “abnormal” and using the 
optic disc/cup maps created by researchers from IIIT Hyderabad in collaboration 
with Aravind Eye Hospital in Madurai, India [15].

Retinal image for optic nerve evaluation (RIM-ONE): This dataset includes 169 ret-
inal fundus images that have been labeled as either “glaucoma” or “non-glaucoma.” 
There are a total of 118 images classified as normal: 12 images representing early- 
stage glaucoma, 14 images for moderate-stage glaucoma, 14 images for advanced-
stage glaucoma, and 11 images for ocular hypertension. These retinal images were 
captured at three different hospitals located in various regions of Spain [16].

3.2	 Preprocessing

Cropping. The initial dimensions of the fundus image were too large to be 
directly inserted into the neural network. Therefore, to reduce the dimensionality 
of the original image, the significant section containing the disc was cropped to 
512 × 512 pixels. The cropping causes a data loss, but since the approach in this study 
is based on CDR, the cropped area, which does not include part of the cup or disc, 
does not have a significant impact on the detection results. In addition, it reduces 
computational time, increases segmentation accuracy, and standardizes the input 
image for further processing, as shown in Figure 2.

Fig. 2. Cropped fundus image

https://online-journals.org/index.php/i-joe
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Data augmentation. Image augmentation is a technique that involves applying var-
ious transformations to the original images in order to generate multiple transformed 
copies of the same image [17]. Every copy, however, is quite different from the other 
in some aspect, depending on the augmentation techniques you apply, such as shifting, 
rotating, flipping, etc. These techniques not only enable the use of a larger dataset but 
also incorporate a level of variation into the data. This helps the model generate unseen 
data more effectively. In addition, the model becomes more robust when trained on 
new, slightly modified images. In the final output, we obtained 2,000 eye fundus images.

Channel separation. The images were divided into separate red, green, and blue 
channels, as shown in Figure 3. The red channel was selected for optic disc seg-
mentation due to its superior visibility in capturing the optic disc compared to the 
green and blue channels. On the other hand, the blue channel was used for optic cup 
segmentation because it offered better contrast in delineating the boundaries of the 
optic cup compared to the other channels [18].

Fig. 3. Channel separation

3.3	 Method

The proposed approach consists of five steps: data resizing, data augmentation, 
channel separation, segmentation of the optical disc and optical cup using a modified 
U-Net architecture, and classification using the DenseNet-201 technique. Figure 4 
illustrates an overview of the proposed method.

Fig. 4. Proposed method

https://online-journals.org/index.php/i-joe
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Segmentation approach. U-net is an image segmentation technique primar-
ily focused on image segmentation tasks. These features make U-net highly ver-
satile in medical imaging and have resulted in its widespread adoption as a key 
tool for medical imaging segmentation tasks [19]. The success of U-net is evident 
in its extensive utilization across various imaging modalities, ranging from MRI 
(magnetic resonance imaging) to microscopy. It has a “U” shape visually. The struc-
ture is symmetrical and is composed of three main sections: the contraction, the 
bottleneck, and the expansion section. The first section, known as the encoder, is 
responsible for extracting contextual information from an image. This element con-
sists of a combination of convolution layers and max pooling layers, which help 
to capture the unique features of the image while also reducing its dimensions. 
This reduction in size helps to decrease the overall parameters of the network. 
It involves the iterative application of two sets of 3 × 3 convolution layers, each 
followed by a ReLU activation function and batch normalization. Subsequently, a  
2 × 2 max pooling operation is conducted to reduce the spatial dimensions. The bot-
tleneck, which connects the encoder and decoder networks, facilitates the flow of 
information. It consists of two layers of 3 × 3 convolutions, with each layer being  
followed by a ReLU activation function. The second block is the decoder block. It 
provides accurate localization through transposed convolution and also allows for 
the recovery of the initial size of the image. The decoder block initiates by upsam-
pling the feature map using a 2 × 2 transposed convolution layer. Subsequently, two 
sets of 3 × 3 convolution layers are applied, with each convolution operation being 
followed by a ReLU activation function. The final output of the decoder is passed 
through a 1 × 1 convolution layer with a sigmoid activation function. We will change 
the filter size to (4 × 4) in the conv2d layers, the upsampling layer, and the pooling 
layer. A larger filter size enables us to extract more features from the image. Since 
each layer adds a significant number of parameters, a larger maxpool size means 
more efficient subsampling [20]. The middle exclusion layer was removed in the 
modified U-net because it resulted in information loss. In the model output, we will 
have the image on the right, which is called a mask and represents the label of the 
optical disk truth. This is what our model should predict [21] (see Figures 5 and 6).

Fig. 5. Optical cup segmentation

https://online-journals.org/index.php/i-joe
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Fig. 6. Optical disc segmentation

Classification approach. The research [16] suggested using the CNN model 
with pre-trained DenseNet-201. DenseNet was specifically designed to address 
the declining accuracy caused by gradient leakage in high-level neural networks. 
Due to the significant gap between the input layer and the output layer, there 
is a risk of data loss before reaching the final destination. The objective is to 
classify glaucoma images using a dataset of retinal fundus images. To extract 
features from the dataset, we utilize a pre-trained DenseNet-201 model, and the 
classification task is executed using a CNN model. The dataset is divided into 70% 
for training and 30% for performance analysis validation. For classification, two 
dense layers with 128 and 64 neurons are being used. The feature extraction 
network is followed by sigmoid activation for binary classification. Calculation of 
CDR and DDLS (disc damage likelihood scale). The CDR is an important indicator 
for detecting glaucoma. A healthy eye is typically considered to have an average 
CDR value below 0.3. In contrast, a CDR exceeding 0.5 indicates glaucomatous 
eyes, and values ranging from 0.3 to 0.5 suggest suspected cases [17]. On the 
other hand, the DDLS value for a normal eye is typically higher than 0.3, while 
a glaucomatous eye tends to have a DDLS value below 0.3. They are calculated 
as follows:

 Horizontal CDR  = �
Horizontal Cup

Horizontal Disc

�

�
 (1)

 �Vertical CDR  =
Vertical Cup

Vertical Disc

�

�
 (2)

 Air CDR  =
Air Cup

Air Disc

�

�
 (3)

DDLS represents the ratio of the minimum rim width to the disc diameter, as 
shown in Figure 7. It is calculated using the following equation:

 DDLS = �
min Rim

diameter Dis

�

� c
 (4)
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Fig. 7. Retinal fundus image

4	 RESULTS	AND	DISCUSSION

Accuracy is a performance metric that reflects the model’s evaluation of its per-
formance on a specific subset of data. It serves as a fundamental measure for eval-
uating the success of the classification process. Accuracy is commonly used when 
both positive and negative classes are equally important. The calculation of accuracy 
is determined by using the following equation.

 Accuracy �
�

� � �
�

TP TN

TP TN FP FN
 (5)

Precision is a measurement that signifies the ratio of accurately predicted posi-
tive instances to all instances predicted as positive. It reflects the cumulative positive 
predictive value of the model. A lower precision value indicates the presence of a 
significant number and quantity of false positives, highlighting the impact of these 
inaccuracies on the performance of the classification model. The precision metric 
can be calculated using the following equation:

 Precision   TP
TP FP

=
+

 (6)

Lists should be used sparingly, and when necessary, they should be kept concise 
and brief.

 TN   TP
TP FP

=
+

 (7)

TP stands for true positive, which refers to the total number of correctly predicted 
positive cases.

FP indicates the total number of incorrectly predicted positive cases.
TN refers to the total number of correctly obtained predictions in the negative cases.
FN refers to the total number of incorrect predictions in the negative cases.
Intersection-over-union (IoU), also known as Jaccard’s Index (JI), is one of the 

most commonly used metrics in semantic segmentation. The IoU is a simple and 
extremely efficient metric, as shown in Figure 8.
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Fig. 8. Training and testing loss analysis

A modified U-Net architecture was introduced in this research to perform optic 
disc and optic cup segmentation and detect glaucoma by developing a model. The 
evaluation of glaucoma images involved using the DRISHTI-GS and RIM-ONE data-
sets. The dataset was divided into two subsets: a training set, which included 70% of 
the samples, and a testing set, which comprised the remaining 30%. The proposed 
method has achieved promising results in the segmentation of optical discs. The 
precision and accuracy metrics for the RIM-ONE dataset are 0.99 and 0.996, respec-
tively. For the DRISHTI-GS dataset, and the values are 0.937 (Table 1).

Table 1. Performance of the optical disc segmentation

Dataset TP FP TN FN JI Accuracy

DRISHTI-GS .87 0 1 .12 .12 .937

RIM-ONE 1.0 .007 .99 0 .36 .996

The classification of glaucoma employed a pre-trained model. Four neural net-
work architectures were tested and evaluated: VGG16, Inception Resnet, Resnet 
152v2, and DenseNet-201 [22], [23]. The evaluation criteria were used to assess the 
accuracy and precision of each model, as shown in Tables 2 and 3. The results have 
shown that DenseNet-201 achieves the highest values: 98.82% accuracy and 98.63% 
precision. Figures 9 and 10 illustrate the results.

Therefore, the adoption of the modified U-Net architecture and the application 
of the DenseNet-201 technique can be considered a practical approach that helps 
doctors prevent glaucoma and avoid missed diagnoses.

Table 2. Comparison of accuracy for different classification techniques

Model Training Test

VGG19 97.73 95.54

Inception Resnet 94.86 91.64

Resnet 152v2 97.56 93.21

DenseNet-201 98.82 96.90

Table 3. Comparison of precision for different classification techniques

Model Training Test

VGG19 97.30 94.70

Inception Resnet 93.81 91.52

Resnet 152v2 97.28 93.02

DenseNet-201 98.63 96.45

https://online-journals.org/index.php/i-joe
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Fig. 9. Training and testing accuracy analysis

Fig. 10. Training and testing loss analysis

Numerous studies have been conducted using fundus images from various data-
sets to detect glaucoma. Table 4 presents a comparison of the accuracy achieved by 
our method with the results obtained in several recent studies.

Table 4. Comparison with previous studies using the same DRISHTI-GS and RIM-ONE datasets

Study Dataset Method Accuracy

Shinde et al. [10] DRISHTI-GS Segmentation with U-Net 98.00

Pathan et al. [24] DRISHTI-GS Classification with SVM 96.70

Esengönül et al. [25] RIM-ONE MobileNet with CNN 72.80

Haider et al. [26] RIM-ONE Classification with Resnet-18 85.00

Haider et al. [26] RIM-ONE Classification with Resnet-50 78.30

Haider et al. [26] RIM-ONE Semantic segmentation 95.00

Haider et al. [27] RIM-ONE Separable linked segmentation residual network 90.00
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5	 CONCLUSION

Glaucoma is a leading cause of vision loss worldwide. Because symptoms of 
glaucoma do not appear until later in the disease, it is challenging to accurately 
detect it at an early stage. Regular testing for glaucoma is essential and recom-
mended. However, the testing is time-consuming and challenging, and there is 
currently a shortage of eye specialists available. CNN has emerged as the primary 
approach for addressing challenges related to extracting information from digital 
images. This study presents a deep learning-based model for detecting glaucoma. 
The proposed model utilized the DRISHTI-GS and RIM-ONE datasets to evaluate 
glaucoma images. 70% of the data has been used for training, while the remaining 
30% has been allocated for testing. The segmentation of the optic disc and optic cup 
is performed using a modified U-Net architecture. U-Net proves to be a highly effi-
cient algorithm for medical image segmentation. Secondly, the features of CDR and 
DDLS CDR were considered as decision-making criteria for glaucoma detection. 
Finally, a DenseNet-201 classification model was used to classify between normal 
and glaucoma-affected eyes. The proposed model achieved a training accuracy of 
98.82% and a testing accuracy of 96.90%. We believe that our trained approach can 
be utilized and further developed for clinical applications in hospitals. Therefore, 
although the reported results are promising, our ongoing efforts and the future 
direction outlined in this paper are focused on enhancing the performance of the 
proposed model. Our objective is to achieve improved results by exploring an alter-
native approach during the preprocessing stage, specifically the incorporation of 
transfer learning techniques. Additionally, there is potential to develop a system 
that combines clinical factors with images, further enhancing the accuracy of glau-
coma detection.
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