3 research outputs found

    Graphene Oxide Supercapacitors: A Computer Simulation Study

    No full text
    Supercapacitors with graphene oxide (GO) electrodes in a parallel plate configuration are studied with molecular dynamics (MD) simulations. The full range of electrode oxidation from 0% (pure graphene) to 100% (fully oxidized GO) is investigated by decorating the graphene surface with hydroxyl groups. The ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI<sup>+</sup>BF<sub>4</sub><sup>−</sup>) is examined as an electrolyte. Capacitance tends to decrease with increasing electrode oxidation, in agreement with several recent measurements. This trend is attributed to the decreasing reorganization ability of ions near the electrode and a widening gap in the double layer structures as the density of hydroxyl groups on the electrode surface increases

    Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism

    No full text
    Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI<sup>+</sup>BF<sub>4</sub><sup>–</sup>) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid

    High-Energy and Long-Lasting Organic Electrode for a Rechargeable Aqueous Battery

    No full text
    Redox-active organic materials (ROMs) hold great promise as potential electrode materials for eco-friendly, cost-effective, and sustainable batteries; however, the poor cycle stability arising from the chronic dissolution issue of the ROMs in generic battery systems has impeded their practical employment. Herein, we present that a rational selection of electrolytes considering the solubility tendency can unlock the hidden full redox capability of the DMPZ electrode (i.e., 5,10-dihydro-5,10-dimethylphenazine) with unprecedentedly high reversibility. It is demonstrated that a multiredox activity of DMPZ/DMPZ+/DMPZ2+, which has been previously regarded to degrade with repeated cycles, in the newly designed electrolyte can be utilized with surprisingly robust cycle stability over 1000 cycles at 1C. This work signifies that tailoring the electrode–electrolyte compatibility can possibly unleash the hidden potential of many common ROMs, catalyzing the rediscovery of organic electrodes with long-lasting and high energy density
    corecore