Graphene Oxide Supercapacitors: A Computer Simulation Study

Abstract

Supercapacitors with graphene oxide (GO) electrodes in a parallel plate configuration are studied with molecular dynamics (MD) simulations. The full range of electrode oxidation from 0% (pure graphene) to 100% (fully oxidized GO) is investigated by decorating the graphene surface with hydroxyl groups. The ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI<sup>+</sup>BF<sub>4</sub><sup>−</sup>) is examined as an electrolyte. Capacitance tends to decrease with increasing electrode oxidation, in agreement with several recent measurements. This trend is attributed to the decreasing reorganization ability of ions near the electrode and a widening gap in the double layer structures as the density of hydroxyl groups on the electrode surface increases

    Similar works

    Full text

    thumbnail-image

    Available Versions