4,121 research outputs found

    Upper critical fields and thermally-activated transport of Nd(O_0.7F_0.3)FeAs single crystal

    Full text link
    We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100 T of high T_c cuprates. H_c2(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H_c2 shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T_c but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4-5 decades. The activation energy has very different field dependencies for H||ab and H\perp ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H_{c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H_c2(T),which may significantly reduce H_c2(0) as compared toH_c2(0)~200-300 T based on extrapolations of H_c2(T) near T_c down to low temperatures.Comment: 11 pages, 16 figure

    A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution

    Full text link
    We discuss excess noise contributions of a practical balanced homodyne detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator. A high speed balanced homodyne detector suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3dB bandwidth of the balanced homodyne detector is found to be 104MHz and its electronic noise level is 13dB below the shot noise at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits/s over a few kilometers.Comment: 22 pages, 11 figure

    Fluctuation-driven capacity distribution in complex networks

    Full text link
    Maximizing robustness and minimizing cost are common objectives in the design of infrastructure networks. However, most infrastructure networks evolve and operate in a highly decentralized fashion, which may significantly impact the allocation of resources across the system. Here, we investigate this question by focusing on the relation between capacity and load in different types of real-world communication and transportation networks. We find strong empirical evidence that the actual capacity of the network elements tends to be similar to the maximum available capacity, if the cost is not strongly constraining. As more weight is given to the cost, however, the capacity approaches the load nonlinearly. In particular, all systems analyzed show larger unoccupied portions of the capacities on network elements subjected to smaller loads, which is in sharp contrast with the assumptions involved in (linear) models proposed in previous theoretical studies. We describe the observed behavior of the capacity-load relation as a function of the relative importance of the cost by using a model that optimizes capacities to cope with network traffic fluctuations. These results suggest that infrastructure systems have evolved under pressure to minimize local failures, but not necessarily global failures that can be caused by the spread of local damage through cascading processes

    The falling chain of Hopkins, Tait, Steele and Cayley

    Get PDF
    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3g/3 if the motion is nonconservative, but g/2g/2 if the motion is conservative, gg being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home camcorder is used to measure the fall of a three-dimensional version called an xyzxyz-slider. After frictional effects are corrected for, its vertical falling acceleration is found to be ax/g=0.328±0.004a_x/g = 0.328 \pm 0.004. This result agrees with the theoretical value of ax/g=1/3a_x/g = 1/3 for an ideal energy-conserving xyzxyz-slider.Comment: 17 pages, 5 figure

    Feasibility of quantum key distribution through dense wavelength division multiplexing network

    Full text link
    In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of the classical channels to the quantum channel has been investigated for both QKD based on single photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from the classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a "mode selector" which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0dBm), the latter can be multiplexed with 38 classical channels (0dBm power each channel) and still has a secure distance around 10km. Preliminary experiment has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure

    Half-metallic antiferromagnets in double perovskites: LaAVRuO6_6 (A=Ca, Sr, and Ba)

    Full text link
    Based on the theoretical exploration of electronic structures, we propose that the ordered double perovskites LaAVRuO6_6 and LaVO3_3/ARuO3_3 (001) superlattice (A = Ca, Sr and Ba) are strong candidates for half-metallic (HM) antiferromagnets (AFMs). %LaAVRuO6_6 and LaVO3_3/ARuO3_3 have the %100% spin polarizations at the Fermi level but with zero %total magnetic moments. We have shown that the HM-AFM nature in LaAVRuO6_6 is very robust regardless of (i) divalent ion replacement at A-sites, (ii) oxygen site relaxation, (iii) the inclusion of the Coulomb correlation, and (iv) cation disorder. A type of the double exchange interaction is expected to be responsible for the half-metallicity and the antiferromagnetism in these systems.Comment: 4 pages, 4 figure

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators
    corecore