48 research outputs found

    Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology.

    Get PDF
    Background\ud \ud Here, we report on the partial and full-length genomic (FLG) variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs), 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 7 adult T-cell leukemia/lymphoma (ATLL) patients, using an Illumina paired-end protocol.\ud Methods\ud \ud Blood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis.\ud Results\ud \ud A high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14) and FLG (n = 76) data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5%) individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA) and that 4 individuals (4.5%) were infected with the Japanese sub-subtypes (aB). A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil.\ud Conclusions\ud \ud This study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data will add to our current understanding of the evolutionary history of this medically important virus.This study was supported with funding from the Fundação de Amparo a Pesquisa do Estado de São Paulo (2011/12297-2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Real-time monitoring of functional interactions between upstream and core promoter sequences in living cells of sea urchin embryos

    Get PDF
    There are some functional compatibilities between upstream and core promoter sequences for transcriptional activation in yeast, Drosophila and mammalian cells. Here we examined whether similar compatibilities exist in sea urchin embryos, and if so, whether they are dynamically regulated during early development. Two reporter plasmids, each containing a test promoter conjugated to either CFP or YFP, were concurrently introduced into embryos, and their expression patterns were studied by fluorescence microscopy. The upstream sequence of the Hemicentrotus pulcherrimus (Hp) OtxE promoter drives the expression of its own core promoter and that of Strongylocentrotus purpuratus (Sp) Spec2a in different embryonic regions, especially at the late gastrula stage. Interestingly, when the four putative transcription factor binding sites of this upstream sequence were individually mutated, the resulting sequences directed different spatiotemporal expression from the same set of two core promoters, indicating that combinations of upstream factors may determine core promoter usage in sea urchin embryos. In addition, the insertion or deletion of consensus or nonconsensus TATA sequences changed the expression profile significantly, irrespective of whether the upstream sequence was intact or mutated. Thus, the TATA sequence may serve as a primary determinant for core promoter selection in these cells

    OryzaExpress: An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

    Get PDF
    Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology
    corecore