114 research outputs found

    Neutral beam current drive in a tokamak

    Full text link
    Neutral beam current drive (NBCD) on the EAST tokamak is studied by using Monte-Carlo simulation. The electron shielding effect to the fast ion current is taken into account by using a fitting formula applicable to general tokamak equilibria and arbitrary collisionality regime. The net currents driven by the beam are off-axis although the fast ion currents are on-axis. This is found to be due to the electron shielding effect being strong near the magnetic axis. We also investigate the dependence of NBCD efficiency on the plasma density. The results indicate that the NBCD efficiency decreases with the increase in plasma density. A simple semi-analytic estimation of the dependence of NBCD efficiency on the density is proposed and is in reasonable agreement with the results directly obtained in the simulations

    Fast equilibrium reconstruction by deep learning on EAST tokamak

    Full text link
    A deep neural network is developed and trained on magnetic measurements (input) and EFIT poloidal magnetic flux (output) on the EAST tokamak. In optimizing the network architecture, we use automatic optimization in searching for the best hyperparameters, which helps the model generalize better. We compare the inner magnetic surfaces and last-closed-flux surfaces (LCFSs) with those from EFIT. We also calculated the normalized internal inductance, which is completely determined by the poloidal magnetic flux and can further reflect the accuracy of the prediction. The time evolution of the internal inductance in full discharges is compared with that provided by EFIT. All of the comparisons show good agreement, demonstrating the accuracy of the machine learning model, which has the high spatial resolution as the off-line EFIT while still meets the time constraint of real-time control

    Stretchable hybrid bilayered luminescent composite based on the combination of strain-induced and triboelectrification-induced electroluminescence

    Get PDF
    High luminescence intensity from materials that are excited by external stimuli is highly desired. In this work, a stretchable hybrid luminescent composite (HLC) that has multiple luminescence modes is reported. The luminescence can be excited either by externally applied mechanical strain or by a moving object that slides against the HLC. When the HLC is deformed, such as being twisted or folded, the ZnS/Cu phosphor experiences mechanical strain that trigger the mechanoluminescence (ML) of the phosphors. Moreover, as the HLC slides against a contact object, the triboelectrification at the contact interface induces the electroluminescence of phosphor. Here, a series of internal and external factors were studied on how they influence the luminescent intensity. It is found that the luminescent intensity from the two modes can be superposed. The HLC material was used to fabricate a fiber-based luminescent device that can be driven by air flow. The overall luminescent intensity is enhanced by over 72% compared to that obtained solely from the ML. The HLC reported in this work has such potential applications as self-powered light sources and sensors as means of detecting dynamic motions and interactio

    Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    Get PDF
    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions

    Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    Get PDF
    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |ν| ≈ V a0/3 or |ν| ≈ V A0/5 where V A0is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient

    Myelofibrosis involving lymph node: a novel cytogenetic abnormality in a mimicker of mesenchymal neoplasm

    Get PDF
    A case of primary myelofibrosis involving lymph node and with a novel cytogenetic abnormality [del (18) (p11.2-3)] is reported. The abnormalities are identical among specimens from the lymph node, peripheral blood, and bone marrow that were analyzed years apart. Additionally, we show that the infiltrate by dysplastic megakaryocytes in the lymph node morphologically mimics a metastatic mesenchymal neoplasm, even when the clinical history myelofibrosis was known
    • …
    corecore