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Abstract

Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to investi-

gate fishbone modes excited by fast ions on the Experimental Advanced Superconducting

Tokamak (EAST). The simulations use realistic equilibrium reconstructed from experiment

data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic

slowing down distribution is used to model the distribution of the fast ions from neutral

beam injection (NBI). The resonance condition is used to identify the interaction between

the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously

in resonance with the bounce motion of the trapped particles and the transit motion of the

passing particles. Both the passing and trapped particles are important in destabilizing the

fishbone mode. The simulations show that the mode frequency chirps down as the mode

reaches nonlinear stage, during which there is substantial flattening of the perpendicular

pressure of fast ions, compared with that of the parallel pressure. For passing particles,

the resonance remains within the q = 1 surface while, for trapped particles, the resonant

location moves out radially during the nonlinear evolution. In addition, parameters scan-

ning are performed to examine the dependence of the linear frequency and growth rate of

fishbones on the pressure and injection velocity of fast ions.
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I. INTRODUCTION

The fishbone mode is usually considered as a kind of internal kink mode desta-

bilized by energetic particles (EPs)[1–3]. In tokamaks, EPs generated by fusion

reactions[4] and/or auxiliary heating can destabilize fishbone mode[5–7], which can

cause loss of EPs[8, 9], thus reducing the efficiency of plasma heating and possibly

damaging the first wall. Fishbone mode was first observed in the experiments with

near perpendicular neutral beam injection (NBI) in the Poloidal Divertor eXperi-

ments (PDX)[10]. Fishbone modes have been extensively investigated both analyti-

cally and numerically for decades[1, 11–16]. One of the established analytic models

interpreting the fishbone mode considers the resonance between the kink mode and

the motion of EPs[1]. The motion that keeps the resonance can be the toroidal

precession of trapped EPs[1], the toroidal transit motion of passing particles[16], or

the bounce motion of trapped particles[17]. A great deal of numerical simulations

have been carried out to investigate the interaction between fishbone modes and

EPs[13, 18–20]. Early works using reduced model and keeping the mode structure

fixed found the redistribution of EPs by the mode[21]. Numerical study using re-

duced MHD model and including the MHD nonlinearity[14] emphasized the influence

of MHD nonlinearity on the mode stability and mode structure in the regime of near

instability threshold and well above the threshold. Self-consistent simulations us-

ing M3D-K code found that the frequency chirps down due to the steepest pressure

gradient of EPs region moving out radially[4].

In this work, self-consistent kinetic-MHD hybrid simulations using MEGA code[22]

are carried out to investigate fishbone instabilities excited by fast ions on the Exper-

imental Advanced Superconducting Tokamak (EAST). The simulations use realistic

equilibrium reconstructed by EFIT[23] code with the constraint of the q = 1 radial

location (q is the safety factor). Anisotropic slowing down distribution is used to
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model the distribution of fast ions generated by deuterium NBI.

The simulation results show that, as expected, the dominant harmonic of the

mode is of m/n = 1/ (−1) and mainly localizes within the q = 1 surface, where

m and n are the poloidal and toroidal mode number, respectively. The fishbone

mode found in the simulation is of high frequency, with frequency being larger than

the usual precession drift fishbones. Resonance condition analysis indicates that the

fishbone mode is simultaneously in resonance with the bounce motion of the resonant

trapped particles and the toroidal transit motion of the resonant passing particles.

Both the passing particles and trapped particles are important in destabilizing the

fishbone mode. The nonlinear simulations show that the mode frequency chirps

down in the nonlinear stage and the frequency chirping is found to be accompanied

by the flattening of the perpendicular pressure profiles and the radial moving out

of the resonant location of trapped particles. The simulation results indicate the

saturation level |δBθ/B0| ≈ 10−3, where δBθ is the perturbed poloidal magnetic

field. This saturation level is in agreement with the experimental observation of

fishbone modes on EAST[24]. Furthermore, the simulation results indicate that the

mode saturation level is independent of the fast ions parameters in the parameter

regime examined. In addition, parameters scanning are performed to examine the

dependence of the linear frequency and growth rate of fishbones on the pressure

and injection velocity of fast ions. The results of these parameters scanning are in

qualitative agreement with those of previous studies[4, 25].

The remainder of this article is organized as follows. Sec. II describes the physics

model used in the simulation. The parameters of thermal plasma and fast ions used

in this work are described in Sec. III. Linear and nonlinear simulation results are

presented in Sec. IV. Sec. V presents a convergence study for the typical parameters

used in the simulation. Sec. VI is a brief summary.
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II. SIMULATION MODEL

MEGA is a numerical code calculating the interaction of EPs and thermal

plasmas[26–29]. The code has been extensively used to study Alfvén eigenmodes

(AEs) and energetic particle modes (EPMs). In MEGA, the thermal plasma is de-

scribed by the nonlinear full MHD equations, which consist of the mass continuum

equation
∂ρ

∂t
= −∇ · (ρu) + νn∇2 (ρ− ρeq) , (1)

the momentum equation (with the effect of EPs)

ρ
∂u

∂t
= −ρΩ×u− ρ∇

(

u2

2

)

−∇p+(j − j ′h)×B−∇× (νρΩ)+
4

3
(νρ∇ · u) , (2)

the Faraday’s law
∂B

∂t
= −∇×E, (3)

and the equation of state

∂p

∂t
= −∇·(pu)−(Γ− 1) p∇·u+(Γ− 1)

[

νρΩ2 +
4

3
νρ (∇ · u)2 + ηj ·

(

j − jeq
)

]

+νn∇2 (p− peq) ,

(4)

where, ρ, u and p are the mass density, fluid velocity and pressure of the thermal

plasmas, respectively, B is the magnetic field, E is the electric field, which is given by

E = −u×B+η
(

j − jeq
)

, j is the current density, which is given by j = ∇×B/µ0,

µ0 is the vacuum magnetic permeability, Ω is the vorticity given by Ω = ∇ × v,

Γ = 5/3 is the adiabatic constant, η is the electric resistivity, ν and νn are the artificial

viscosity and diffusion coefficients chosen to maintain the numerical stability. The

subscript “eq” represents the equilibrium variables, and j ′h is the current density

of EPs without the contribution of E × B drift (the contribution of E × B drift

disappears due to quasi-neutrality[28]). MHD equations (1)-(4) are solved in MEGA

by using the fourth order (in both space and time) finite difference scheme in the
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right-handed cylindrical coordinates (R, φ, Z), where R is the major radius, φ is the

usual toroidal angle, and Z is the vertical coordinate.

In MEGA, EPs are described by the drift/gyro kinetic equations (drift-kinetic

model is adopted in this work). The guiding-center orbits of EPs are followed by

using the fourth-order Runge-Kutta method. The evolution of the distribution of

EPs is simulated by the δf particle-in-cell method.

III. SIMULATION PARAMETERS

The equilibrium used in this work is reconstructed by EFIT code by using the con-

strains from experimental diagnostics in EAST deuterium discharge #48605@4.624s,

where fishbone modes were observed[24]. The flux surface shape and the simulation

region are shown in Fig. 1a. The profiles of total plasma pressure P (including

the contribution from fast ions), electron number density ne, and safety factor q are

shown in Fig. 1b.

In this work, to model the fast ions generated by deuterium NBI, we use an

anisotropic slowing down distribution given by

feq
(

ψp, v,Λ
)

= C exp

(

−
ψp

ψscale

)

1

v3 + v3crit

1

2
erfc

(

v − vbirth
∆v

)

exp

(

−(Λ− Λ0)
2

∆Λ2

)

,

(5)

where C is a constant determining the stored energy of fast ions; ψp is the normalized

poloidal magnetic flux; ψscale is a quantity characterizing the radial gradient of fast

ions; v is the velocity of fast ions; vcrit is the critical velocity for the collisional friction

of fast ions with thermal electrons and ions being equal, which is given by[30]

vcrit =

(

3
√
πme

4mD

)1/3

vte (6)

where me and mD are the mass of electron and deuteron, respectively, vte is the

thermal velocity of electrons; vbirth is the neutral beam injection velocity; ∆v is a
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Figure 1. (a) Magnetic surface shape of EAST discharge #48605 at 4.624s. The Last-

Closed-Flux-Surface (LCFS) and q = 1 surface are indicated on (a). The simulation region

on the poloidal plane is also indicated on (a), which is a rectangle with Rmin < R < Rmax

and Zmin < Z < Zmax, where Rmin, Rmax, Zmin, and Zmax are the extreme points on

the flux surface with
√

ψp = 99%, where ψ̄p is the normalized poloidal magnetic flux.

(b) Radial profiles of the total pressure, safety factor, and electron number density. The

radial location of the q = 1 surface is at
√

ψp = 0.25. The value of the safety factor at

the magnetic axis q0 = 0.91. The value of electron number density at the magnetic axis

ne0 = 5.27 × 1019m−3. The toroidal magnetic field at the magnetic axis Bφ0 = +1.75T .

The toroidal plasma current Ip = −412 kA. The stored energy of plasma corresponding to

the pressure profile is 175 kJ.

small velocity (compared with vbirth), which is used to set the cutoff width near vbirth;

Λ = µB0/ε is normalized magnetic moment with µ and ε being the magnetic moment

and energy of fast ions and B0 being the magnetic filed strength at the magnetic axis;

Λ0 and ∆Λ characterize the peak location and the width of the distribution over the

pitch angle, respectively.

In this work, except the parameters scanning in Secs. IVD, IVE and IVF, we fix
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the following parameters, ψscale = 0.3; vcrit = 1.89×106m/s, which corresponds to the

critical velocity given by Eq. (6) evaluated with the electron temperature Te = 2k eV;

the injected beam velocity is chosen as vbirth = 2.398 × 106m/s, corresponding to a

deuteron with kinetic energy of 60 keV; the cutoff width near the beam velocity is

chosen as ∆v = 0.05VA0, where VA0 =
√

B2
0/µ0ne0 (mD +me) = 3.7178× 106m/s is

the Alfvén velocity at magnetic axis, ne0 is the electron number density at magnetic

axis; the central pitch angle variable Λ0 is chosen as Λ0 = 0.88 which is estimated by

using NUBEAM code [31]; the expansion width of the distribution over Λ is chosen

as ∆Λ = 0.1. The constant C appearing in Eq. (5), which determines the stored

energy of fast ions, is characterized in the following by βh0 = ph0/ (B
2
0/2µ0), where

ph0 is a constant pressure and the spatial integration,
∫

3
2
ph0 exp

(

−ψp/ψscal

)

d3V ,

is used to set the stored energy of fast ions given by distribution (5). We choose

βh0 = 1% except in the sections of parameters scanning.

In this work, the viscosity and diffusivity are set to be ν = νn = 10−5VA0Raxis,

and the resistivity η is set to be zero, where Raxis is the major radius of the magnetic

axis. The numbers of grid points used in the simulation are (128× 16× 128) for

cylindrical coordinates (R, φ, Z). Considering the computing efficiency, 219 markers

are used in the parameters scanning study in Secs. IVE and IVF, and 222 markers

are used in the other sections. A convergence test over the number of markers is

presented in Sec. V, which shows that the number of markers used in this work is

acceptable.
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IV. SIMULATION RESULTS

A. Mode structure and frequency

MEGA code uses the cylindrical coordinates (R, φ, z) to discretize the MHD equa-

tions and advance the orbits of EPs. Magnetic flux coordinates (ψ, θ, φ) are used

when analyzing the simulation results, where ψ is a flux surface label (in this work,

ψ =
√

ψp), φ is the usual toroidal angle, θ is chosen to make magnetic field lines

straight on (θ, φ) plane. The zero point of θ coordinate is chosen at the low-field

side (LFS) of the midplane and the positive direction of θ is countercolckwise direc-

tion when viewed in φ direction. In (ψ, θ, φ) coordinates, a perturbation a can be

expanded in two-dimensional Fourier series over θ and φ:

a (ψ, θ, φ, t) =
∞
∑

n=−∞

∞
∑

m=0

[

a(c)mn (ψ, t) cos (mθ + nφ) + a(s)mn (ψ, t) sin (mθ + nφ)
]

(7)

where m and n are the poloidal and toroidal mode number, respectively, a
(c)
mn (ψ, t)

and a
(s)
mn (ψ, t) are cosine and sine part of the Fourier expansion coefficients, respec-

tively. A single harmonics in the Fourier expansion (7) can also be written as

a(c)mn (ψ, t) cos (mθ + nφ) + a(s)mn (ψ, t) sin (mθ + nφ)

= A cos [mθ + nφ− α] (8)

where A is the amplitude of the perturbation given by A =

√

(

a
(s)
mn

)2

+
(

a
(s)
mn

)2

and

α is the phase angle given by α = atan
(

a
(s)
mn, a

(c)
mn

)

. Using this, the angular frequency

of the perturbation can be written as ω = dα/dt and the growth rate can be written

as γ = d ln (A) /dt.

In this work, we keep only the n = [−8, 8] toroidal harmonics and higher n har-

monics are filtered out every 1000 time steps in the simulation. Figure 2a plots the

time evolution of the MHD perturbation energy of different toroidal mode numbers,
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which indicates the |n| = 1 mode is dominant in the simulation with other n har-

monics being negligibly small. Figure 2b plots the amplitude of the various poloidal

harmonics of the n = −1 component of the radial velocity in the linear stage, which

indicates that the m = 1 harmonic is dominant. The results in Fig. 2b also indicate

the dominant m = 1 harmonic is localized within the q = 1 surface.

Figure 2c plots the time evolution of the m/n = 1/-1 component of the poloidal

magnetic field Bθ. The result shows that Bθ oscillates with a frequency f = ω/2π ≈
16.4 kHz and grows exponentially in the linear stage. In the nonlinear stage, the mode

frequency chirps down rapidly from the 16.4 kHz in the linear stage to 6.75 kHz, as

shown in Fig. 2c. Based on these observations, we identify the dominant mode found

in the simulation is a fishbone mode.

Using Eq. (8) and noting that n < 0,m > 0, and ω > 0, the toroidal and

poloidal propagation direction of the mode can be determined. Toroidally, the mode

travels in −φ direction. Poloidally, the mode travels in +θ direction. In terms of the

physical quantities, the mode propagates toroidally in the co-current direction and

poloidally in the ion diamagnetic drift direction. These results are consistent with

the general rules for the propagation direction of ion-driven modes[32] and also the

EAST experimental observation of fishbone modes[24].

The two-dimensional structures of the perturbed toroidal electric field Eφ on the

poloidal plane in the linear stage and nonlinear stage are plotted in Figs. 3a and

3b, which show that, as expected, the m = 1 harmonic is dominant. Comparing

Figs. 3a and 3b, we find that the mode structures of the linear and nonlinear stages

are different in that the twist of the mode structure in the nonlinear stage is more

significant than that in the linear stage. This twisted structure is consistent with the

previous fishbone simulations presented in Ref. [3, 4]. The twist may be attributed

to the radial phase variation induced by the kinetic effects of the fast ions, and it
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Figure 2. (a) Time evolution of MHD perturbation energy of various toroidal harmonics.

(b) Radial profiles of the amplitude of the various poloidal harmonics of the n = −1

component of the radial velocity in the linear stage; the profile of the safety factor is also

plotted. (c) and (d) plot the time evolution of the cosine component and frequency of the

m/n = 1/− 1 harmonic of the perturbed poloidal magnetic field Bθ. The blue dots in (d)

indicate the mean frequency calculated using the period of the oscillation.

has also been found in fast ions driving AEs and EPMs simulations[33–35].

B. Resonance condition of fast ions and fishbone modes interaction

To identify the particles that are resonant with the fishbone mode, a simple

method is to pick out those particles that have large value of |δf |. The large per-

turbation |δf | to the distribution of fast ions may indicate these particles are having
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Figure 3. Contour of the toroidal electric field Eφ on the poloidal plane at two time slices:

(a) in the linear stage at t = 0.59ms, (b) in the nonlinear stage at t = 1.19ms. Also plotted

on the figures are the LCFS and the q = 1 surface.

strong interaction with the modes. We pick out top 10000 particles with large value

of |δf | at t = 0.71ms. To examine whether these particles are in resonant with the

mode, we calculate the poloidal and toroidal frequencies, ωθ and ωφ, of these parti-

cles and then examine how well the resonance condition is satisfied. The resonance

condition of fast ion with a coherent mode is given by[28, 36]

l =
ω − nωφ

ωθ

, (9)

where ω is the mode angular frequency, n is the toroidal mode number, l is called

resonance order in this paper and it should be close to an integer if the particle is

strongly resonant with the mode. Figures 4a and 4b plot the value of l calculated by

Eq. (9) for the top 10000 particles chosen above, which show that the value of l ≈ 1

for most of the trapped particles and l ≈ 0, 2 for the passing particles. The toroidal

and poloidal frequency of trapped and passing resonant particles are plotted in Figs.

4c and 4d.

For the resonant trapped particles, the resonance order l ≈ 1 and thus equation
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(9) is written as

ω ≈ ωθ − ωφ. (10)

Further note that, as shown in Fig. 4c, the toroidal precession frequency of these

trapped particles, ωφ, is much smaller than their poloidal frequency ωθ and thus can

be dropped in Eq. (10), giving ω ≈ ωθ, i.e., the mode frequency is approximately

equal to the bounce frequency of the resonant trapped particles. This indicates it is

the bounce motion of trapped particles, instead of the precession motion, that keeps

the particles in phase with the fishbone mode in this case.

For the resonant passing particles, there are two resonance orders, l ≈ 0 and

l ≈ 2. As shown in Fig. 4d, the number of particles with l ≈ 2 is much less than

those with l ≈ 0. For the dominant resonance order l ≈ 0, equation (9) is written as

ω ≈ −ωφ i.e., the mode frequency is approximately equal to the toroidal frequency

of the resonant passing particles.

The above results indicates that the mode excited in this case is simultaneously

resonant with the bounce motion of trapped particles and toroidal circulating motion

of passing particles. The frequency of bounce frequency of trapped particles and

toroidal circulating frequency of passing particles are usually much larger than typical

toroidal precession frequency of trapped particles. Therefore, the fishbone modes

simulated in this work is a kind of high-frequency fishbone, with frequency being

larger than the usual precession drift fishbones.

The ratio of physical passing particles and trapped particles represented by the

top 10000 markers is Npassing/Ntrapped ≈ 1.42 for this case. This means that both the

passing particles and trapped particles are important in destabilizing the fishbone

mode.

In Fig. 4, markers are sequenced by their magnitude of |δf | (No. 1 marker has

the largest value of |δf |). Comparing Figs. 4a and 4b, we find that almost all of the
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top 200 markers are passing particles. This indicates that the passing particles are

more important than trapped ones in the interaction with the fishbone mode in our

case. The reason for this can be understood by a rough estimation of the population

of trapped particles within the q = 1 surface. The turning point of trapped particles

with Λ = Λ0 is located at µB = ε, where µ = Λ0ε/B0. This gives Λ0B/B0 = 1. Using

B ≈ B0R0/R, we have R = Λ0R0. With Λ0 = 0.88, the turning point is located at

R = 0.88R0 = R0 − 0.12R0. For EAST tokamak, R0/a ≈ 4, then R = R0 − 0.48a.

This indicates that the particles with Λ = 0.88 moving inside the q = 1 magnetic

surface located at r/a ≈
√

ψp = 0.25 do not reach the turning point. In other

words, the particles inside the q = 1 surface with Λ = 0.88 are all passing particles,

based on the zero-orbit-width approximation. This may explain why the majority

of the resonant particles are passing particles. It would be interesting to investigate

different q profiles with the q = 1 surface located at r/a > 0.48 or different fast ion

distributions with Λ0 more near unity, which may make the interaction with trapped

particles dominant. This will be our near future work.

The energy of these resonant particles is plotted in Fig. 4e, which indicates that

the energy of the resonant particles is in the relatively low region (0 ∼ 30 keV)

compared with the birth energy 60 keV.

C. Flattening of fast ion pressure profile

Figure 5 gives the time evolution of the m/n = 0/0 component of the parallel

and perpendicular pressure profiles of fast ions. The results indicate that the fast

ion pressure profile remains unchanged in the linear stage, i.e., the fishbone mode

has no significant influence on the transport of the fast ions in the linear stage. The

pressure profile begins to flatten when the mode enters the nonlinear stage. In the

nonlinear stage, the fast ions pressure continue flattening. The flattening mainly
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occurs in the core region within the q = 1 surface, which is consistent with the fact

that the fishbone mode localizes within the q = 1 surface.

Figure 5 also shows that the flattening of the perpendicular pressure of fast ions

is more significant than that of the parallel pressure. Note that the perpendicular

pressure is mainly contributed by trapped particles and the parallel pressure is mainly

contributed by passing particles. Then the significant flattening of the perpendicular

pressure may indicate that, in the saturation stage, trapped particles have stronger

interaction with the mode than the passing particles do.

To verify this, we pick out top 10000 markers with large value of |δf | and then ex-

amine the number ratio between the physical passing particles and trapped particles

at various time. The results are plotted in Fig. 6. The results indicate the physical

number of trapped particles exceeds that of the passing particles in the nonlinear

stage. This gives an evidence that trapped particles have more significant influence

on the nonlinear evolution of the mode than that the passing particles do.

Furthermore, for the 10000 markers chosen above, we examine the time evolution

of the spatial density of physical particles represented by these markers on (R,Z)

plane. The results are plotted in Figs. 7a∼f. The results show that the resonant

location of passing particles remains within the q = 1 surface during the fishbone

evolution, however, the resonant location of trapped particles moves out radially from

the linear stage (Fig. 7d) to the initial saturation stage (Fig. 7e) and the late stage

of nonlinear evolution (Fig. 7f). This radial moving out of the resonant location of

trapped particles also corresponds to the flattening of the perpendicular pressure of

fast ions.

The flattening of the perpendicular pressure profile of fast ions is accompanied by

the frequency chirping down process shown in Fig. 2b. This is consistent with the

conclusion in Ref. [4] that the frequency chirping is related to the radial moving out
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of the shoulder in trapped particles distribution.

D. Saturation level of fishbone modes

As is shown in Fig. 2b, the saturation level of the m/n = 1/ − 1 component of

poloidal perturbed magnetic field is
∣

∣Bθ1/−1/B0

∣

∣ ≈ 10−3, which agrees with the EAST

experimental observation[24]. To investigate the dependence of the mode amplitude

saturation level on fast ions parameters, a series of parameter scans are carried out.

Figure 8 shows the nonlinear amplitude evolution of the
∣

∣Bθ1/−1

∣

∣ component for cases

with different fast ions parameters (beam injection energy εbirth, central pitch angle

Λ0, beta value on magnetic axis βh0 and scale length ψscale). Figure 8 shows that

these fast ions parameters have little influence on the fishbone mode saturation level

in this parameter regime of fast ions.

E. Dependence of mode frequency and growth rate on fast ion beta

Figure 9 plots the fishbone mode frequency and the linear growth rate as func-

tions of βh0 while fixing the scale-length ψscale and approximately fixing the total

stored energy of thermal plasma and fast ions. The results indicate that the kink

mode is stable when βh0 is smaller than a critical value. But when βh0 is larger

than a critical value the fishbone mode is destabilized with a nonzero frequency. It

also can be found from Fig. 9 that with increasing βh0 the growth rate increases

almost linearly while the real frequency of the mode is almost kept constant. The

growth rate of the fishbone mode is determined by the pressure gradient of the fast

ions. The pressure gradient increases with increasing βh0, therefore, the growth rate

increases with increasing βh0. The fishbone mode frequency is determined by the

characteristic orbit frequencies of the resonant fast ions, which is independent of the
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pressure gradient of fast ions. Thus the mode frequency is nearly unchanged with

increasing βh0. These numerical results are consistent with the previous numerical

and analytical results[1, 4, 14].

F. Dependence of linear growth rate and frequency on beam velocity

The beam injection velocity is an important parameter in determining the prop-

erties of fishbone modes. Figure 10 shows the dependence of the mode frequency

and growth rate on the beam injection energy εbirth. The results indicate that the

frequency increased with increasing εbirth. This can be understood by noting that

the mode frequency is determined by the characteristic orbit frequency of fast ions,

which usually increases with increasing birth energy.

The results show that the growth rate of the fishbone mode decreases with in-

creasing εbirth. This trend is not well understood. It is possibly due to that the

higher frequency modes may be more near the Alfvén continuum and thus encounter

larger continuum damping. This trend is in agreement with M3D-K simulation result

using the same EAST equilibrium, which will be reported in a future publication[37].

Similar results based on other tokamaks are also obtained in previous works[2, 3, 25].

G. On energy conservation

The total MHD fluctuation energy is given by[27],

WMHD =

∫

(

1

2
ρu2 +

B2 −B2
eq

2µ0

+
δp

Γ− 1

)

dV (11)

where Beq is the equilibrium magnetic filed and δp is the perturbed pressure of the

thermal plasma. The energy transferred from the thermal plasma to fast ions is
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written as,

Wtrans =

∫ t

0

dt′
∫

j ′h ·EdV. (12)

Figure 11 plots the time evolution of WMHD and Wtrans, which indicates that the

energy transferred from the fast ions to the bulk plasma, −Wtrans, is approximately

equal to the total fluctuation MHD energy,WtotalMHD. This indicates that the energy

conservation is preserved well in the simulation.

V. CONVERGENCE STUDY

Considering the computing efficiency, typical number of markers used in this paper

is 219 for the linear cases presented in Secs. IVE and IVF, and 222 for the nonlinear

evolution cases presented in the other sections. In order to confirm the simulation

results, convergence study is carried out with regard to the number of markers. Two

cases with different number of markers, 219 markers vs. 222 markers, are compared

in Fig. 12, which indicates that the linear growth rate and frequency in these two

case are almost the same. This indicates that the numerical convergence is sufficient

for the number of markers used in this paper.

VI. SUMMARY

Kinetic-MHD hybrid simulations using MEGA code are carried out to investigate

the fast ions driven fishbone instabilities on EAST tokamak, using the equilibrium

reconstructed by EFIT code from the experiment data. The fishbone mode found in

the simulation is a kind of high-frequency fishbone mode with frequency larger than

the toroidal precession frequency of trapped particles. The resonance condition is

used to identify resonant particles, which shows that the fishbone mode is mainly

resonant with the poloidal bounce motion of the resonant trapped particles and the
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toroidal transit motion of the resonant passing particles. The results show that the

number of resonant passing particles is comparable with that of the resonant trapped

particles, which indicates that both trapped and passing particles are important in

driving the mode.

The mode frequency chirps down as the mode reaches saturation. In the nonlinear

stage, the number of trapped particles exceeds that of the passing particles. There

is significant flattening of the perpendicular pressure in the nonlinear stage which is

related to the radial moving out of the resonant location of trapped particles. The

flattening of the parallel pressure is very small and there is no obvious radial moving

out of the resonant location of passing particles. These results may indicate that

trapped particles have more significant influence on the mode than that the passing

particles do in the nonlinear stage. The saturation level of the mode is on the order

of |δBθ/B0| ≈ 10−3, which agrees with the experimental observations. Furthermore,

parameter scanning shows that the saturation level is almost independent of the

fast ions parameters examined. Twist of the two-dimension mode structure on the

poloidal plane is also observed in the nonlinear stage. In addition, parameter scans

indicate that the dependence of the linear frequency and growth rate on the pressure

and birth velocity of fast ions is in qualitative agreement with that of previous studies.

The original motivation of this work is to reproduce, using MEGA code, the fish-

bone modes observed in EAST experiments. The results indicate this attempt is

only partially successful. The mode observed in experiments is of low-frequency (5

kHz in plasma frame), which belongs to the precession resonance fishbone modes[24].

However, the mode found in our simulations is of higher frequency (16 kHz), which

is proved to be related to the bounce and transit resonance. It is still unclear why

the simulation shows the bounce and transit resonance instead of the precession res-

onance observed in the experiments. A plausible reason for this discrepancy can be

that, without an experimental determination of the beam distribution, the distri-
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bution function (Eq. (5)) adopted in this work may deviate significantly from the

realistic beam distribution in the experiment. Investigating the sensitivity of fishbone

modes to the forms of beam distribution is one work among our future plans.
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Figure 4. (a) and (b) The values of the resonance order l of the top 10000 markers with

large value of |δf |. Among these markers, trapped ones are shown in (a) while passing ones

are shown in (b). Markers are sequenced by their magnitude of |δf | (No. 1 marker has the

largest value of |δf |). Note that almost all of the top 200 markers are passing particles, as

can be seen by comparing (a) and (b). The toroidal frequency ωφ and poloidal frequency

ωθ of trapped resonant particles (c) and passing particles (d). (e) Energy of the 10000

markers.
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Figure 5. Time evolution of the m/n = 0/0 harmonic of the parallel pressure (a) and

perpendicular pressure (b) of the fast ions. The pressure is normalized by B2
0/2µ0, where

B0 is the magnetic field strength at the magnetic axis. t = 0.78ms corresponds to the end

of the linear stage and the beginning of the nonlinear stage.
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Figure 7. Contour plots of the number density of passing particles from the physical

particles represented by the top 10000 markers with large value of |δf | on poloidal plane

(a) in the linear growth stage (t = 0.65ms), (b) initial saturation stage (t = 0.83ms) and

(c) late stage of nonlinear evolution (t = 1.19ms). (d), (e) and (f) are the same as (a),

(b) and (c), respectively, but for trapped particles. The LCFS and q = 1 surface are also

plotted in the figures.
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Figure 8. Time evolution (in logarithm scale) of the m/n = 1/ − 1 harmonic of the
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