522 research outputs found

    Fuzzy Multi-Objectives Topology Optimization of Slider Pallet in the Picking Machine of Camellia Fruit

    Get PDF
    In order to improve the dynamic characteristics of the slider pallet in the camellia fruit picking machine under the traditional empirical design and to lighten the weight, a fuzzy multi-objective topology optimization design method was proposed. In this paper, a static and dynamic topology optimization mathematical model was constructed by the compromise programming method, and the weight coefficients of each sub-objective were dynamically assigned by the fuzzy satisfaction variable weight coefficient method, and then the fuzzy multi-objective topology optimization design of the slider pallet for bending condition, bending-torsional complex condition, inertia condition and the first three orders of dynamic frequency was performed. The optimization results showed that the weight of the optimized slider pallet was reduced by 19.4%, and the first-order modal frequency was increased by 5.0%, second order modal frequency increased by 6.6%, third order modal frequency increased by 8.2%; the maximum deformation and maximum stress were increased, but still met the design requirements

    CSST forecast: impact from non-Gaussian covariances and requirements on systematics-control

    Full text link
    The precise estimation of the statistical errors and accurate removal of the systematical errors are the two major challenges for the stage IV cosmic shear surveys. We explore their impact for the China Space-Station Telescope (CSST) with survey area ∌17,500deg⁥2\sim17,500\deg^2 up to redshift ∌4\sim4. We consider statistical error contributed from Gaussian covariance, connected non-Gaussian covariance and super-sample covariance. We find the super-sample covariance can largely reduce the signal-to-noise of the two-point statistics for CSST, leading to a ∌1/3\sim1/3 loss in the figure-of-merit for the matter clustering properties (σ8−Ωm\sigma_8-\Omega_m plane) and 1/61/6 in the dark energy equation-of-state (w0−waw_0-w_a plane). We further put requirements of systematics-mitigation on: intrinsic alignment of galaxies, baryonic feedback, shear multiplicative bias, and bias in the redshift distribution, for an unbiased cosmology. The 10−210^{-2} to 10−310^{-3} level requirements emphasize strong needs in related studies, to support future model selections and the associated priors for the nuisance parameters.Comment: submitted to MNRA

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Regularization Cuckoo Search Algorithm for Multi-Parameter Optimization of the Multi-Laminated Controlled Release System

    No full text
    The multi-laminated controlled release system has been widely used in the modern pharmaceutical industry because of its simple structure and safety, which can control the drug release behavior by regulating its internal parameters. To achieve three desired drug release behaviors of constant rate, linear reduction, and nonlinearity, which can be controlled by the optimization of the controllable parameters in the controlled release system, such as initial concentration and diffusion coefficient, a new regularization cuckoo search algorithm based on the cuckoo search algorithm and Tikhonov regularization method is proposed. The numerical examples confirm the stability, effectiveness, and feasibility of the proposed method. The effect of the number of model layers on the optimization results is also analyzed

    Interspecific and intraspecific Taylor's laws for frog skin microbes

    No full text
    Amphibians are known to have an abundance of microorganisms colonizing their skin, and these symbionts often protect the host from disease. There are now many comprehensive studies on amphibian skin microbes, but the interspecific and intraspecific abundance distributions (or abundance heterogeneity) of amphibian skin microbes remain unclear. Furthermore, we have a very limited understanding of how the abundance and heterogeneity of microbial communities relate to the body size (or more specifically, skin surface area) of amphibian hosts. In this study, we evaluated the interspecific and intraspecific abundance distribution patterns of amphibian skin microbes and evaluated whether the symbiotic skin microbes of different anuran species share a fundamental heterogeneity scaling parameter. If scaling invariance exists, we hypothesize that a fundamental heterogeneity scaling value also exists. A total of 358 specimens of 10 amphibian host species were collected, and we used Type-I and III Taylor’s power law expansions (TPLE) to assess amphibian skin microbial heterogeneity at the community and mixed-species population levels, respectively. The obtained results showed that, at the community scale, a high aggregation of the microbial abundance distribution on the skin barely changed with host size. In a mixed-species population (i.e., a community context), the abundance distribution pattern of mixed microbial species populations also does not change with host size and always remains highly aggregated. These findings suggest that while amphibian skin microbiomes located in different hosts may have different environmental conditions, they share a fundamental heterogeneity scaling parameter, and thus, scale invariance exists. Finally, we found that microhabitat area provided by the host skin is vital to the stability of the symbiotic microbial community

    Preparation of Soy-Based Adhesive Enhanced by Waterborne Polyurethane: Optimization by Response Surface Methodology

    No full text
    Response surface methodology was used to optimize the preparation conditions of soy-based adhesives (SBAs) in this work. The parameters such as the effects and interactions of waterborne polyurethane (WPU) addition level (X1), temperature (X2), and time (X3) on wet shear strength (Y) were investigated. The regression model for SBA preparation was significant (p=0.0034<0.05). The coefficient of determination (R2) of this model was to be 0.9256. According to the results, WPU addition level (X1) had a significant influence on the wet shear strength, whereas reaction temperature (X2) and reaction time (X3) were not significant. The optimal preparation conditions of SBA were 12 wt.% WPU addition level for 101 min at 76°C. Under the optimal conditions, the wet shear strength was 1.07 ± 0.08 MPa, which was in good agreement with the model predicted value. An analysis of FTIR spectra of WPU, soy flour, and soy-based adhesive further confirmed the validity of the model
    • 

    corecore