580 research outputs found

    Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    Get PDF
    The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects

    Examination of a pre-exercise, high energy supplement on exercise performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to examine the effect of a pre-exercise high energy drink on reaction time and anaerobic power in competitive strength/power athletes. In addition, the effect of the pre-exercise drink on subjective feelings of energy, fatigue, alertness and focus was also explored.</p> <p>Methods</p> <p>Twelve male strength/power athletes (21.1 ± 1.3 y; 179.8 ± 7.1 cm; 88.6 ± 12.1 kg; 17.6 ± 3.3% body fat) underwent two testing sessions administered in a randomized and double-blind fashion. During each session, subjects reported to the Human Performance Laboratory and were provided with either 120 ml of a high energy drink (SUP), commercially marketed as Redline Extreme<sup>® </sup>or 120 ml of a placebo (PL) that was similar in taste and appearance but contained no active ingredients. Following consumption of the supplement or placebo subjects rested quietly for 10-minutes prior to completing a survey and commencing exercise. The survey consisted of 4 questions asking each subject to describe their feelings of energy, fatigue, alertness and focus for that moment. Following the completion of the questionnaire subjects performed a 2-minute quickness and reaction test on the Makoto testing device (Makoto USA, Centennial CO) and a 20-second Wingate Anaerobic Power test. Following a 10-minute rest subjects repeated the testing sequence and after a similar rest period a third and final testing sequence was performed. The Makoto testing device consisted of subjects reacting to both a visual and auditory stimulus and striking one out of 30 potential targets on three towers.</p> <p>Results</p> <p>Significant difference in reaction performance was seen between SUP and PL in both average number of targets struck (55.8 ± 7.4 versus 51.9 ± 7.4, respectively) and percent of targets struck (71.9 ± 10.5% versus 66.8 ± 10.9%, respectively). No significant differences between trials were seen in any anaerobic power measure. Subjective feelings of energy (3.5 ± 0.5 versus 3.1 ± 0.5) and focus (3.8 ± 0.5 versus 3.3 ± 0.7) were significantly higher during SUP compared to PL, respectively. In addition, a trend towards an increase in average alertness (p = 0.06) was seen in SUP compared to P.</p> <p>Conclusion</p> <p>Results indicate a significant increase in reaction performance, with no effect on anaerobic power performance. In addition, ingestion of this supplement significantly improves subjective feelings of focus and energy in male strength/power athletes.</p

    Iron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency

    Get PDF
    Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D1 (D1R) levels were reduced and dopamine receptor D2 (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed “rescue response” with beneficial influence on motor impairment due to low iron status

    1B/(−)IRE DMT1 Expression during Brain Ischemia Contributes to Cell Death Mediated by NF-κB/RelA Acetylation at Lys310

    Get PDF
    The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (−IRE) protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(−)IRE DMT1 isoform significantly increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by deferoxamine treatment or (−)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which concomitantly decreased intracellular iron levels. We found evidence that 1B/(−)IRE DMT1 was a target gene for RelA activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1 promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (−)IRE DMT1 protein, as well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine 310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently offering neuroprotection. Our data showed that 1B/(−)IRE DMT1 expression and intracellular iron influx are early downstream responses to NF-κB/RelA activation and acetylation during brain ischemia and contribute to the pathogenesis of stroke-induced neuronal damage

    A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decades, in spite of intensive search, no significant increase in the survival of patients with glioblastoma has been obtained. The role of the blood-brain barrier (BBB) and especially the activity of efflux pumps belonging to the ATP Binding Cassette (ABC) family may, in part, explain this defect.</p> <p>Methods</p> <p>The <it>in-vitro </it>activities of JAI-51 on cell proliferation were assessed by various experimental approaches in four human and a murine glioblastoma cell lines. Using drug exclusion assays and flow-cytometry, potential inhibitory effects of JAI-51 on P-gp and BCRP were evaluated in sensitive or resistant cell lines. JAI-51 activity on <it>in-vitro </it>microtubule polymerization was assessed by tubulin polymerization assay and direct binding measurements by analytical ultracentrifugation. Finally, a model of C57BL/6 mice bearing subcutaneous GL26 glioblastoma xenografts was used to assess the activity of the title compound <it>in vivo</it>. An HPLC method was designed to detect JAI-51 in the brain and other target organs of the treated animals, as well as in the tumours.</p> <p>Results</p> <p>In the four human and the murine glioblastoma cell lines tested, 10 μM JAI-51 inhibited proliferation and blocked cells in the M phase of the cell cycle, via its activity as a microtubule depolymerising agent. This ligand binds to tubulin with an association constant of 2 × 10<sup>5 </sup>M<sup>-1</sup>, overlapping the colchicine binding site. JAI-51 also inhibited the activity of P-gp and BCRP, without being a substrate of these efflux pumps. These <it>in vitro </it>studies were reinforced by our <it>in vivo </it>investigations of C57BL/6 mice bearing GL26 glioblastoma xenografts, in which JAI-51 induced a delay in tumour onset and a tumour growth inhibition, following intraperitoneal administration of 96 mg/kg once a week. In accordance with these results, JAI-51 was detected by HPLC in the tumours of the treated animals. Moreover, JAI-51 was detected in the brain, showing that the molecule is also able to cross the BBB.</p> <p>Conclusion</p> <p>These <it>in vitro </it>and <it>in vivo </it>data suggest that JAI-51 could be a good candidate for a new treatment of tumours of the CNS. Further investigations are in progress to associate the title compound chemotherapy to radiotherapy in a rat model.</p

    Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain

    Get PDF
    International audienceBACKGROUND: Rett syndrome (RTT, MIM #312750) is a severe neurological disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Female patients are affected with an incidence of 1/15000 live births and develop normally from birth to 6-18 months of age before the onset of deficits in autonomic, cognitive, motor functions (stereotypic hand movements, impaired locomotion) and autistic features. Studies on Mecp2 mouse models, and specifically null mice, revealed morphological and functional alterations of neurons. Several functions that are regulated by bioaminergic nuclei or peripheral ganglia are impaired in the absence of Mecp2. RESULTS: Using high performance liquid chromatography, combined with electrochemical detection (HPLC/EC) we found that Mecp2(-/y) mice exhibit an alteration of DA metabolism in the ponto-bulbar region at 5 weeks followed by a more global alteration of monoamines when the disease progresses (8 weeks). Hypothalamic measurements suggest biphasic disturbances of norepinephrine and serotonin at pathology onset (5 weeks) that were found stabilized later on (8 weeks). Interestingly, the postnatal nigrostriatal dopaminergic deficit identified previously does not parallel the reduction of the other neurotransmitters investigated. Finally, dosage in cortical samples do not suggest modification in the monoaminergic content respectively at 5 and 8 weeks of age. CONCLUSIONS: We have identified that the level of catecholamines and serotonin is differentially affected in Mecp2(-/y) brain areas in a time-dependent fashion

    Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various human diseases have oxidative stress as one of their component. Many herbs have been reported to exhibit properties that combat oxidative stress through their active constituents such as flavonoids, tannins, phenolic compounds etc. <it>Cytisus scoparius </it>(CS) Link, (Family: Leguminosae), also called <it>Sarothamnus scoparius</it>, has been shown in <it>invitro </it>experiments to be endowed with anti-diabetic, hypnotic and sedative and antioxidant activity. Therefore this study was carried out to evaluate CS for its anxiolytic, antidepressant and anti-oxidant activity in stressed rats.</p> <p>Methods</p> <p>60% methanolic extract of CS was quantified for phenolic content by Folin-Ciocalteau's method. Chronic unpredictable mild stress (CMS) was employed to induce stress in rats. CS (125 and 250 mg/kg, p.o) and diazepam (DZM) (2 mg/kg, p.o) was administered during the 21 day stress exposure period. Anxiolytic and antidepressant activities of CS were assessed in open field exploratory and behavioural despair paradigms, respectively. Plasma glucose and total lipids; endogenous antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT); non-enzymic-ascorbic acid and thiobarbituric acid reactive substances (TBARS) levels were measured in brain, kidneys and adrenals using standard protocols to assess the effect of CS.</p> <p>Results</p> <p>Total phenolic content of CS was found to be 8.54 ± 0.16% w/w. CMS produced anxiogenic and depressive behaviour in experimental rats with metabolic disturbance. Significant decrease in SOD, CAT levels and increase in lipid peroxidation level was observed in stressed rats. CS administration for 21 days during stress exposure significantly increased the ambulatory behaviour and decreased the freezing time in open field behaviour. In behavioural despair test no significant alteration in the immobility period was observed. CS also improved SOD, CAT, and ascorbic acid level and controlled the lipid peroxidation in different tissues.</p> <p>Conclusion</p> <p>CS possesses anti-stress and moderate anxiolytic activity which may be due, in part, to its antioxidant effect that might warrant further studies.</p

    Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke

    Get PDF
    Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF

    Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoamine oxidase A (MAO-A), a mitochondrial enzyme that degrades monoamines including neurotransmitters, is highly expressed in basal cells of the normal human prostatic epithelium and in poorly differentiated (Gleason grades 4 and 5), aggressive prostate cancer (PCa). Clorgyline, an MAO-A inhibitor, induces secretory differentiation of normal prostate cells. We examined the effects of clorgyline on the transcriptional program of epithelial cells cultured from high grade PCa (E-CA).</p> <p>Methods</p> <p>We systematically assessed gene expression changes induced by clorgyline in E-CA cells using high-density oligonucleotide microarrays. Genes differentially expressed in treated and control cells were identified by Significance Analysis of Microarrays. Expression of genes of interest was validated by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>The expression of 156 genes was significantly increased by clorgyline at all time points over the time course of 6 – 96 hr identified by Significance Analysis of Microarrays (SAM). The list is enriched with genes repressed in 7 of 12 oncogenic pathway signatures compiled from the literature. In addition, genes downregulated ≥ 2-fold by clorgyline were significantly enriched with those upregulated by key oncogenes including beta-catenin and ERBB2, indicating an anti-oncogenic effect of clorgyline. Another striking effect of clorgyline was the induction of androgen receptor (AR) and classic AR target genes such as prostate-specific antigen together with other secretory epithelial cell-specific genes, suggesting that clorgyline promotes differentiation of cancer cells. Moreover, clorgyline downregulated EZH2, a critical component of the Polycomb Group (PcG) complex that represses the expression of differentiation-related genes. Indeed, many genes in the PcG repression signature that predicts PCa outcome were upregulated by clorgyline, suggesting that the differentiation-promoting effect of clorgyline may be mediated by its downregulation of EZH2.</p> <p>Conclusion</p> <p>Our results suggest that inhibitors of MAO-A, already in clinical use to treat depression, may have potential application as therapeutic PCa drugs by inhibiting oncogenic pathway activity and promoting differentiation.</p
    corecore