3,666 research outputs found

    Fabrication and Optical Behaviors of Core–Shell ZnS Nanostructures

    Get PDF
    Novel core–shell nanostructures comprised of cubic sphalerite and hexagonal wurtzite ZnS have been synthesized at 150°C by a simple hydrothermal method. The results of HR-TEM and SAED investigation reveal that the cores of hexagonal wurtzite ZnS (ca. 200 nm in average diameter) are encapsulated by a shell of cubic sphalerite ZnS. The FE-SEM image of the nanomaterials shows a surface tightly packed with nanoparticles (<10 nm in size). The optical properties of the fabricated material have been studied in terms of ultraviolet–visible absorption and photoluminescence. Furthermore, a possible mechanism for the fabrication of the core–shell nanostructures has been presented

    Tunable Semiconductors: Control over Carrier States and Excitations in Layered Hybrid Organic-Inorganic Perovskites

    Get PDF
    For a class of 2D hybrid organic-inorganic perovskite semiconductors based on π\pi-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrier states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components

    Model-Independent Determination of H0H_0 and ΩK,0\Omega_{K,0} using Time-Delay Galaxy Lenses and Gamma-Ray Bursts

    Full text link
    Combining the `time-delay distance' (DΔtD_{\Delta t}) measurements from galaxy lenses and other distance indicators provides model-independent determinations of the Hubble constant (H0H_0) and spatial curvature (ΩK,0\Omega_{K,0}), only based on the validity of the Friedmann-Lema\^itre-Robertson-Walker (FLRW) metric and geometrical optics. To take the full merit of combining DΔtD_{\Delta t} measurements in constraining H0H_0, we use gamma-ray burst (GRB) distances to extend the redshift coverage of lensing systems much higher than that of Type Ia Supernovae (SNe Ia) and even higher than quasars, whilst the general cosmography with a curvature component is implemented for the GRB distance parametrizations. Combining Lensing+GRB yields H0=71.5−3.0+4.4H_0=71.5^{+4.4}_{-3.0}~km s−1^{-1}Mpc−1^{-1} and ΩK,0=−0.07−0.06+0.13\Omega_{K,0} = -0.07^{+0.13}_{-0.06} (1σ\sigma). A flat-universe prior gives slightly an improved H0=70.9−2.9+4.2H_0 = 70.9^{+4.2}_{-2.9}~km s−1^{-1}Mpc−1^{-1}. When combining Lensing+GRB+SN Ia, the error bar ΔH0\Delta H_0 falls by 25\%, whereas ΩK,0\Omega_{K,0} is not improved due to the degeneracy between SN Ia absolute magnitude, MBM_B, and H0H_0 along with the mismatch between the SN Ia and GRB Hubble diagrams at z≳1.4z\gtrsim 1.4. Future increment of GRB observations can help to moderately eliminate the MB−H0M_B-H_0 degeneracy in SN Ia distances and ameliorate the restrictions on cosmographic parameters along with ΩK,0\Omega_{K,0} when combining Lensing+SN Ia+GRB. We conclude that there is no evidence of significant deviation from a (an) flat (accelerating) universe and H0H_0 is currently determined at 3\% precision. The measurements show great potential to arbitrate the H0H_0 tension between the local distance ladder and cosmic microwave background measurements and provide a relevant consistency test of the FLRW metric.Comment: Accepted for publication in MNRA

    Methods for labeling error detection in microarrays based on the effect of data perturbation on the regression model

    Get PDF
    Abstract Motivation: Mislabeled samples often appear in gene expression profile because of the similarity of different sub-type of disease and the subjective misdiagnosis. The mislabeled samples deteriorate supervised learning procedures. The LOOE-sensitivity algorithm is an approach for mislabeled sample detection for microarray based on data perturbation. However, the failure of measuring the perturbing effect makes the LOOE-sensitivity algorithm a poor performance. The purpose of this article is to design a novel detection method for mislabeled samples of microarray, which could take advantage of the measuring effect of data perturbations. Results: To measure the effect of data perturbation, we define an index named perturbing influence value (PIV), based on the support vector machine (SVM) regression model. The Column Algorithm (CAPIV), Row Algorithm (RAPIV) and progressive Row Algorithm (PRAPIV) based on the PIV value are proposed to detect the mislabeled samples. Experimental results obtained by using six artificial datasets and five microarray datasets demonstrate that all proposed methods in this article are superior to LOOE-sensitivity. Moreover, compared with the simple SVM and CL-stability, the PRAPIV algorithm shows an increase in precision and high recall. Availability: The program and source code (in JAVA) are publicly available at http://ccst.jlu.edu.cn/CSBG/PIVS/index.htm Contact: [email protected]; [email protected]

    Draft Genome Sequence of Gordonia lacunae BS2T

    Get PDF
    We report here the draft genome sequence of the soil bacterium Gordonia lacunae BS2T ( DSM 45085T JCM 14873T NRRL B-24551T), isolated from an estuary in Plettenberg Bay, South Africa. Analysis of the draft genome revealed that more than 40% of the secondary metabolite biosynthetic genes encode new compounds

    Exchange-biased hybrid gamma-Fe2O3/NiO core-shell nanostructures:three-step synthesis, microstructure, and magnetic properties

    Get PDF
    A two-step solvothermal method combining a calcination process was conducted to synthesize gamma-Fe2O3/NiO core-shell nanostructures with controlled microstructure. The formation mechanism of this binary system has been discussed, and the influence of microstructures on magnetic properties has been analyzed in detail. Microstructural characterizations reveal that the NiO shells consisted of many irregular nanosheets with disordered orientations and monocrystalline structures, packed on the surface of the gamma-Fe2O3 microspheres. Both the grain size and NiO content of nanostructures increase with the increasing calcination temperature from 300 degrees C to 400 degrees C, accompanied by an enhancement of the compactness of NiO shells. Magnetic studies indicate that their magnetic properties are determined by four factors: the size effect, NiO phase content, interface microstructure, i.e. contact mode, area, roughness and compactness, and FM-AFM (where FM and AFM denote the ferromagnetic gamma-Fe2O3 and the antiferromagnetic NiO components, respectively) coupling effect. At 5 K, the gamma-Fe2O3/NiO core-shell nanostructures display certain exchange bias (H-E = 60 Oe) and enhanced coercivity (H-C = 213 Oe)

    Final State Interactions in D0→K0K0ˉD^0 \to K^0 \bar{K^0}

    Full text link
    It is believed that the production rate of D0→K0Kˉ0D^0\to K^0\bar K^0 is almost solely determined by final state interactions (FSI) and hence provides an ideal place to test FSI models. Here we examine model calculations of the contributions from s-channel resonance fJ(1710)f_J(1710) and t-channel exchange to the FSI effects in D0→K0Kˉ0D^0\to K^0\bar K^0. The contribution from s-channel f0(1710)f_0(1710) is smaForthet−channelFSIevaluation,weemploytheone−particle−exchange(OPE)modelandReggemodelrespecti For the t-channel FSI evaluation, we employ the one-particle-exchange (OPE) model and Regge model respecti The results from two methods are roughly consistent with each other and can reproduce the large rate of D0→K0Kˉ0D^0\to K^0\bar K^0 reasonably well$Comment: Latex, 16 pages, with 2 figure
    • …
    corecore