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ABSTRACT 
Motivation: Mislabeled samples often appear in gene expression 
profile because of the similarity of different subtype of disease and 
the subjective misdiagnosis. The mislabeled samples deteriorate 
supervised learning procedures. The LOOE-Sensitivity algorithm is 
an approach for mislabeled sample detection for microarray based 
on data perturbation. However, the failure of measuring the perturb-
ing effect makes the LOOE-Sensitivity algorithm a poor performance. 
The purpose of this paper is to design a novel detection method for 
mislabeled samples of microarray, which could take advantage of 
the measuring effect of data perturbations. 
Results: To measure the perturbing influence value, we define an 
index named perturbing influence value, PIV for short, based on the 
support vector machine regression model. The Column Algorithm 
(CAPIV), Row Algorithm (RAPIV) and Progressive Row Algorithm 
(PRAPIV) based on the PIV value are proposed to detect the misla-
beled samples. Experimental results obtained by using six artificial 
datasets and five microarray datasets demonstrate that all proposed 
methods in this paper are superior to  LOOE-Sensitivity. Moreover, 
compared with the simple SVM and CL-Stability, the PRAPIV algo-
rithm shows an increase in precision and high recall. 
Availability: The program and source code (in JAVA) are publicly 
available at http://ccst.jlu.edu.cn/CSBG/PIVS/index.htm 
Contact: blanzier@dit.unitn.it, ycliang@jlu.edu.cn 

1 INTRODUCTION  
Microarrays are a powerful tool for high-throughput measurement 
of gene expression and more and more groups employ microarrays 
in cancer research (Edwin et al., 2000; Schramm et al., 2005; Alon 
et al., 1998; West et al., 2001; Pomeroy et al., 2002; Wong et al., 
2003; Welsh et al., 2001). A number of methods based on classifi-
cation have been proposed to discover the relationship between 
genes and tumors from the gene expression profiles (Antonov et 
al., 2004; Bø et al., 2002; Dudoit et al., 2002; Tusher et al., 2001). 
However, just as Zhang et al. (2006) reported, there are 10-15% 
samples mislabeled in a microarray, which are usually incurred by 
  
*To whom correspondence should be addressed.  

the similarity of different subtype of disease (Khan et al., 2001) 
and subjective misdiagnosis. The potential mislabeled samples 
would deteriorate classification accuracy seriously, especially for 
supervised learning procedures. Consequently, effective methods 
for labeling errors detection are necessary to improve the analysis 
procedure of microarray data. 

Researchers (Brodley et al., 1999; Sanchez et al., 2003; Muh-
lenbach et al., 2004; Venkataraman et al., 2004;) proposed many 
approaches for detecting labeling errors when the number of fea-
tures is usually smaller than the size of the samples. But most of 
existing approaches are not suitable for microarray data due to the 
characteristics of high dimensionality and small sample size.  

There are some studies trying to identify the wrong labeled sam-
ples from microarray datasets exclusively. Kadota et al (2003) 
proposed a method based on Akaike’s Information Criterion to 
detect outlier samples in the colon microarray data. Zhang et al. 
(2006) developed an iterative method in which the misclassifica-
tion possibility is estimated for each sample in the training set and 
applied it on the breast cancer dataset with the subtypes of estrogen 
receptor status (ER1/ER2). However, these methods were mainly 
applied on only one microarray dataset. Malossini et al. (2006) 
proposed two data perturbing methods, named as the CL-Stability 
algorithm and the LOOE-Sensitivity algorithm, respectively, for 
labeling error detection. Both of the methods are general for bi-
nary-class microarray datasets. Malossini’s methods are based on 
the construction of a Leave-One-Out Perturbed Classification 
(LOOPC) matrix in which the element LOOPC[i, j] is the pre-
dicted label of the sample xj obtained with a SVM classifier while 
the sample xj is excluded from the training dataset and the label of 
the sample xi is flipped (since the labels are either +1 or -1 for 
binary-class issues). The CL-Stability algorithm is similar to a 
voting procedure in which if the number of dissenting votes against 
the original label for a sample is bigger than a threshold this sam-
ple will be considered as a suspect. The LOOE-Sensitivity algo-
rithm focuses on flipped samples and tries to identify the wrong 
labeled samples according to the results with these samples flipped. 
Malossini’s experimental results showed that the CL-Stability 
algorithm dominates the LOOE-Sensitivity algorithm in almost all 
situations. LOOE-Sensitivity tries to discover the difference be-
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tween the correct samples and wrong labeled samples from the 
results of the classification which are either +1 or -1, but we argue 
here that the discrete values are not capable to reflect the effect of 
the flipping. In another word, the failure of measuring the effect of 
the perturbation on the classifier could cause the poor performance 
of the LOOE-Sensitivity algorithm.  

In this paper, the perturbing influence value (PIV) is defined to 
measure the effect of data perturbation on the regression model. 
Based on the PIV value, the Column Algorithm (CAPIV) and the 
Row Algorithm (RAPIV) are proposed adopting different perspec-
tives on the effect of perturbing influence. In order to improve the 
RAPIV algorithm, the Progressive Row Algorithm based on the 
Perturbing Influence Values (PRAPIV) is proposed with a progres-
sive correction procedure. We apply the proposed methods to-
gether with the simple SVM method and the CL-Stability algo-
rithm on six artificial datasets and five microarray datasets. Ex-
perimental results show that the PRAPIV algorithm can increase 
precision and achieve high recall. 

2 MATERIALS AND METHODS 
In this section, we will firstly introduce the datasets used in the experiments, 
and then define the perturbing influence value to measure the effect of data 
perturbation on the regression model. At last, the proposed algorithms are 
described based on the perturbing influence value, respectively.  

2.1 Datasets 
Our goal is to detect the wrong-labeled samples in microarray data, so 
several 2-class microarray datasets on cancers are selected to evaluate the 
algorithms proposed in this paper. As a kind of supplement, some artificial 
datasets are designed to test the algorithms for different situations. 

2.1.1 Microarray datasets  Five 2-class microarray datasets listed in 
table 1 will be used in this paper,  
 
Table 1.  The 2-class microarray datasets 
Datasets Number of genes Number of samples Reference 
  Class 1 Class 2  
Colon 2000 40(T) 22(N) Alon et al., 1999 
Breast 7129 25(ER+) 24(ER-)  West et al., 2001 
CNS 7129 25(C) 9(D) Pomeroy et al., 2002
Cervix 10692 25(T) 8(N) Wong et al., 2003 
Prostate 12626 24(T) 9(N) Welsh et al., 2001 
 

According to Alon et al. (1999) and West et al. (2001), the samples T2, 
T30, T33, T36, T37, N8, N12, N34, N36 in the Colon dataset and the sam-
ples 11, 14, 16, 31, 33, 45, 46, 40, 43 in the Breast dataset are identified as 
outliers with biological evidences. These two datasets can be used as real 
benchmark datasets to test the methods for labeling errors detection. And in 
order to enhance the reliability of the data source, these outliers are re-
moved from Colon dataset and Breast dataset to make two pure datasets 
which are denoted by Colon-p and Breast-p respectively. We consider the 
other three datasets as pure datasets in which there is no wrong labeled 
sample. 

2.1.2 Artificial datasets  Six artificial datasets are constructed for pro-
viding more controlled conditions to evaluate the algorithms. In the artifi-
cial datasets, samples are labeled as either +1 or -1. Features in every sam-
ple are generated randomly. Some features are selected to be discriminating 

features which follow the Gaussian distributions. The mean µ and the stan-
dard deviation σ of the discriminating features are different depending on 
the sample labels. The other features are generated as white Gaussian noise. 
For samples labeled as +1, we take µ=3 and σ=1, and for samples labeled as 
-1, we take µ=-3 and σ=3. The number of features (FN), the number of 
samples (SN), the number of discriminating features (DFN), and the num-
ber of wrong-labeled samples (WLN) are given in Table 2 
 
Table 2.  The artificial datasets 

 FN SN DFN WLN 
Test1 2000 30 5 4 
Test2 2000 30 5 6 
Test3 2000 30 5 10 
Test4 2000 30 10 6 
Test5 200 30 5 6 
Test6 2000 50 5 6 

2.2 Perturbing Influence Values 
The LOOE-Sensitivity algorithm relies on the idea that the flipping will 
definitely affect the result of the SVM classification. The problem of 
LOOE-Sensitivity algorithm is that the discrete values (either +1 or -1) of 
the classification results are not capable to reflect the effect of flipping. It is 
easy to improve the algorithm using a regression model. To make the algo-
rithm more sensitive to data perturbation, we introduce here an index called 
perturbing influence value (PIV) based on function regression models. 

In order to describe our methods clearly, we only consider 2-class data-
sets here, and the idea in this paper can be generalized to solve the labeling 
error detection problem in multi-class datasets. Supposed that a 2-class 
microarray consists of p probes and n samples, xi denotes the expression 
vector of the sample i, and yi is the label value of the sample i where yi∈
{+1, -1}. We define a regression problem to describe the relationship be-
tween xi and yi. We assume xi and yi which is considered as continuous 
value here, are related by an unknown function f such that 

 ( ) ε+= ii xfy  (1) 

Where f is a real-value function and ε  is noise. The aim is to find the 
regression model f  that is an estimate of f . Although there are many 
well-studied regression models, SVM regression model is used in this 
paper to construct the approximation f  due to its good theoretical basis 
and application performance in a number of fields. (Smola et al., 1998).  

Instead of the Leave-One-Out Perturbed Classification matrix defined by 
Malossini et al. (2006), a Leave-One-Out Perturbed Regression matrix 
(denoted by Loopr) is defined, where the element Loopr[i,j] is the regres-
sion value ( )jf x  while the sample xj is treated as testing sample and ex-

cluded from the training dataset, and the label yi of sample xi (which is 
included in training dataset) is flipped. In a binary classification problem, 
the label value yi often takes value in {+1, -1}. Hence, if the label of sample 
xi is flipped, yi is multiplied by -1. According to the definition of Loopr, the 
element Loopr[i, i] is equivalent to the regression value without flipping. 

In order to assess the behavior of the perturbation effect on the regres-
sion model, we state the following hypothesis: 

Hypothesis 1: Flipping a correct sample can make the regression value 
further away from its true label (-1 or +1) and flipping a wrong labeled 
sample can make the regression value closer to its true label (-1 or +1). 

Figure 1 shows the perturbing regression values (Loopr[i,T10], abusing 
of the index notation) of the tumor sample T10 labeled with +1 and its 
regression value without perturbation (Loopr[T10,T10], dashed line) in 
Colon-p dataset. If a sample without labeling error is flipped, the regression 
value of T10 will be further from +1 and closer to -1 than the regression 
value without flipping. It means that Loopr[i,T10] falls under the dashed 
line. It can be seen from Figure 1 that there are 35 regressed values falling 
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under and 17 ones above the dashed line. Hence, we could conclude that 
most of the samples satisfy Hypothesis 1. 

In order to measure how much the flipping will affect the regression re-
sults, we define the perturbing influence value which is the difference 
between regression values before and after flipping. Because the elements 
in the Loopr matrix are continuous values instead of binary values (-1 or 
+1), they are much more sensitive to flipping the label of a single sample.  

The perturbing influence value (PIV) of sample xj under the flipping of 
sample xi, which is denoted by qij, is defined as follow: 

 ],[],[ jiLooprjjLooprqij −=  (2) 

Suppose that a correctly labeled sample xi is flipped, the regression value 
of the sample xj will be away from its original regression value before 
flipping. According to Hypothesis 1, if the label of xj is +1, we expect that 
qij is positive; otherwise, qij is negative.  
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Fig. 1. The regression value of the sample T10 (Loopr[i, T10]) 

2.3 Column Algorithm based on the Perturbing Influ-
ence Value  

In Figure 1, there are some values that are above the dashed line, which 
means that the regression values of some samples violate Hypothesis 1. 
However, we suppose that the sum of PIVs would follow a certain rule 
more uniformly. The total influence value (TIV) of the sample xj denoted 
by Qj is defined as follow: 

 ( )∑∑
==

−==
n

i

n

i
ijj jiLooprjjLooprqQ

11
],[],[  (3) 

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

The index of sample

Q
i

 

 

Normal sample

Tumor sample

 

Fig. 2.  The TIV value of each sample 

If the majority of PIVs follow hypothesis 1, the sum of all PIVs of a 
sample should be positive for a sample with real label +1, and negative for 
a sample with real label -1. It is expected that the TIV value conforms to 
the following hypothesis. 

Hypothesis 2: If the real label of the sample xj is +1, Qj is positive; oth-
erwise, Qj is negative.  

Taking the Colon-p dataset as an example, Figure 2 shows the TIV value 
of each sample in the dataset. 

As shown in Figure 2, the TIV value can clearly make a distinction be-
tween normal samples and tumor samples. It means the regression value 
can reflect the influence of flipping. Suppose that the wrong-labeled sam-
ples is much less than the correct-labeled ones and hence the minor ones do 
not predominate the sign of the TIV value. Consequently, we expected that 
the datasets containing label errors also satisfy Hypothesis 2. 

Given an empirically determined threshold β and the sample xj, if its la-
bel yi is -1 and Qi is larger than β, or if yi is +1 and Qi is smaller than β, 
then xj is a suspect of wrong labeled sample. 

Based on the discussion above, a column algorithm is proposed as fol-
lows. 

Column Algorithm based on the Perturbing Influence Value (CAPIV) 

Function CAPIV (Loopr, y) 
1: 
2: 
3: 
4: 
5: 
6: 
7:  
8: 
9: 
10: 
11: 
12: 
13: 

Begin 
S = {}  //initialize the entry list of the suspects 
For j=1 to n do 

calculate Qj for xj 
If yj×Qj < β Then 

Sample xj is a suspect 
S = S ∪ xj 

Else 
Sample xj is not a suspect 

End If 
End For 
Return S 

End 

2.4 Row Algorithm based on the Perturbing Influence 
Value  

The TIV depends on the label value of the sample, but it is better to find a 
direct relationship between the wrong labeled sample and PIVs. We focus 
on the PIV values which are computed under the flipping of the same sam-
ple. The integrated influence value (IIV) of sample xi, denoted by Fi is 
defined as follows: 

 ( ) ( )∑∑
==

−=×=
11

],[],[11
j

j

n

j
ijji jiLooprjjLoopry

n
qy

n
F  (4) 

Assuming that most PIVs follow hypothesis 1, it can be inferred from the 
definition of the perturbing influence value that most yi×qij should be posi-
tive since the label yi and qij should have the same sign when the label of xi 
is right, that is, if the label yi of sample xi is right-labeled, the product yi×qij 
is expected to be positive; similarly, if sample xi is wrong-labeled, it is 
expected to be negative.  

Based on the discussion above, we state hypothesis 3 as follows:  
Hypothesis 3: If the sample xi is wrong labeled, Fi is negative; otherwise, 

Fi is positive. 
In order to make a preliminary checking of what hypothesis 3 is promis-

ing, we intentionally flip the first 4 samples (with index 1, 2, 3 and 4) and 
the last 4 samples (with index 50, 51, 52 and 53) in Colon-p dataset to 
simulate the wrong labeled samples. The IIV value of every sample is 
shown in Figure 3. It can be seen that the IIV values of all the intentionally 
flipped samples are negative, which means that Hypothesis 3 is followed 
well. It is noticed that there are 5 “correct labeled” samples having the 
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negative IIVs. However, it is obvious that the absolute values of the “out-
liers” are relatively small except for the 11th sample. Hence, it is reasonable 
to infer that these outliers result from data noise. 
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Fig. 3.  The IIV value of each sample 

Based on Hypothesis 3, a row algorithm is proposed as follows. Given a 
threshold γ and a sample xi, if Fi is smaller thanγ, xi is a suspect sample. 

Row Algorithm based on the Perturbing Influence Value (RAPIV) 

Function RAPIV(Loopr, y) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

Begin 
S = {}   //initialize the entry list of the suspects 
For i=1 to n do 

calculate Fi for xi 
If Fi < γ Then 

Sample xi is a suspect 
S = S ∪ xi 

Else 
Sample xi is not a suspect 

End If 
End For 
Return S 

End 

2.5 Progressive Row algorithm based on the Perturb-
ing Influence Value  

A successful algorithm for mislabeling detection should take advantage of 
its performance by fixing the potential wrong-labeled sample. We expect 
that more samples would obey Hypothesis 3, if the IIV values are calcu-
lated by using pure labels according to Eq 4. Here, the pure labels mean 
that all labels do not have labeling error. It can be easily explained theoreti-
cally. In Eq 4, because of wrong-labeled samples, Fi cannot be calculated 
precisely. The fixing of wrong labels would be helpful to detect more sus-
pected samples with IIVs around the thresholdγ.  

There is no need to rebuild Loopr after certain wrong labels are cor-
rected, which would definitely enhance the implementation efficiency. 

It is extremely hard to fix all wrong labels at one time because it is ex-
actly our final goal. But we can correct labels progressively and just fix one 
or two of the wrong labels at each time rather than fix all of them at one 
time. According to the above discussion, we develop a progressive correc-
tion procedure based on the RAPIV algorithm proposed in Section 2.4. 

(1) Firstly, define a variable Vmin to save the minimum evaluation val-
ue in the progressive correction procedure and let Vmin = n. Run 

RAPIV to obtain an initial suspect list S. Let the new label y’=y, 
and the set of flipped samples T={}. 

(2) Check every sample in the suspect list S which is not contained in 
T. Suppose that sample xi is going to be checked, let y’

i = - yi, and 
the new suspect list S’

i=RAPIV(Loopr, y’).  Then let y’
i =  yi.  

(3) Then an estimate method is performed to estimate the number of 
errors which includes false positives and false negatives in S’

i. In 
the estimate method, each element of S’

i is flipped in y to get a new 
label vector y’’, and a mislabeling error detection method is used to 
detect the wrong labels in y’’. The number of the wrong labels de-
noted by D is the output of the estimate method. S’

i is a better sus-
pect list when D is smaller. 

(4) The evaluation value Vi=D+Fi where Fi is the IIV value of the 
sample xi. If all the samples in S have been checked, go to step 5, 
otherwise, jump to step 2. 

(5) Let * min( )ii
V V=  where *i

x S∈  and *i
x T∉ . If * mini

V V>  go to 

step 6, otherwise, put *i
x  in T, and let * *

'
i i

y y= − , *
'
i

S S= , and 

*min i
V V= . If Vmin>0, jump to step 2. 

(6) Return S as the final result. 

Note that in the estimate method, a mislabeling error detection method is 
performed. Considering the high precision of the CL-Stability algorithm 
(Malossini et al. 2006), we use it as the estimate method in this paper. 

 The pseudo code of PRAPIV is shown below: 

Progressive Row Algorithm based on the Perturbing Influence Value 
(PRAPIV) 

Function PRAPIV(Loopr, y) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 

Begin 
Vmin = n 
S = RAPIV(Loopr, y) 
y’=y 
T={} 
While Vmin>0 Do 

k=0 
For each xi in S 

If xi is not in T 
y’(i) = -y’(i) 
S’=RAPIV(Loopr, y’) 
D=Estimate(S’) 
Vi=D+Fi 

If Vi<=Vmin Then 
Vmin = Vi  
k = i 

End 
y’(i) = -y’(i) 

End If 
End For 
If k=0 Then 

Return S 
Else 

y’(k) = -y(k) 
S = RAPIV(Loopr, y’) 
T = T � xk 

End If 
End While 
Return S 

End 

3 RESULTS AND DISCUSSION 

 by guest on January 24, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


Methods for Labeling Error Detection in Microarrays Based on the Effect of Data Perturbation on the Regression Model 

5 

Artificial datasets and microarray datasets are used to evaluate the 
proposed algorithms, including CAPIV, RAPIV and PRAPIV. We 
also perform simple SVM, CL-Stability and LOOE-Sensitivity 
algorithm in order to compare them against the methods presented 
in this paper. The simple SVM method takes all the samples except 
for the test sample as training set and use SVM to classify the test 
sample; if the result is not equal to the original label then it is a 
suspect of being a wrong-labeled sample.  

3.1 Artificial Datasets 
Artificial datasets are more reliable because their wrong labeled 
samples are known exactly. The experimental results on these da-
tasets can reflect the true performance of the proposed methods. 

We construct 6 kinds of artificial datasets mentioned in Section 
2.1 and perform each algorithm with them. For each kind of artifi-
cial dataset, the experiments are performed independently for 50 
times. The mean precision and recall values are listed in Table 3 
and Table 4, respectively. In the experiments on artificial datasets, 
both β in CAPIV and γ in RAPIV are set equal to 0. 

For the 6 kinds of datasets, the precision values of PRAPIV are 
all higher than those of the other methods, and CL-Stability always 
gives the second highest precision value. CAPIV and RAPIV have 
similar precision values as the simple SVM method. The recall 
values of CAPIV, RAPIV, PRAPIV and simple SVM are all higher 
than those of CL-Stability. The LOOE-Sensitivity algorithm per-
forms worst in both precision values and recall values. 
 
Table 3. Mean precision values on the artificial datasets 

 Test1 Test2 Test3 Test4 Test5 Test6 
Simple 
SVM 0.6127 0.5812 0.4481 0.7857 0.6292 0.7531 

CL-
Stability 0.7462 0.6827 0.5182 0.8613 0.7229 0.8226 

LOOE-
Sensitivity 0.2543 0.1436 0.04 0.3879 0.2259 0.3417 

CAPIV 0.6523 0.5205 0.4463 0.7985 0.6499 0.7300 
RAPIV 0.6418 0.5302 0.4537 0.8064 0.5512 0.7062 

PRAPIV 0.8341 0.7644 0.5484 0.9771 0.8681 0.9342 
 
Table 4. Mean recall values on the artificial datasets 

 Test1 Test2 Test3 Test4 Test5 Test6 
Simple 
SVM 0.925 0.8281 0.6300 0.9567 0.9133 0.95 

CL-
Stability 0.855 0.75 0.56 0.8933 0.82 0.9167 

LOOE-
Sensitivity 0.4928 0.3395 0.1047 0.2855 0.1436 0.3831 

CAPIV 0.9134 0.8281 0.6291 0.9503 0.9082 0.9323 
RAPIV 0.935 0.8385 0.62 0.9600 0.8267 0.9233 

PRAPIV 0.915 0.8333 0.59 0.9767 0.9167 1.0 
 
Because of the different conditions in the artificial datasets, dif-

ferent results are obtained with each method. For Test1, all the 
methods perform well, since the noise is low (only 4 wrong labeled 
samples in 30 samples). For Test2, the effect of every method turns 
worse because there are 2 more wrong labeled samples than Test1. 
For Test3, the number of the wrong labeled samples is up to 10 in 
all 30 samples. SVM produces poor results under such conditions, 
and so do the other 5 methods because they are based on SVM. It 

should be noticed that in Test3 every method performs worse than 
it does in the other datasets, especially for PRAPIV. The precision 
value of PRAPIV is around only 3% larger than that of the CL-
Stability while in the other datasets it will be much larger. The 
PRAPIV algorithm uses the CL-Stability and the RAPIV algo-
rithms, so the effect of PRAPIV depends on the results of those 
two methods. If both of them do not work well, it cannot be ex-
pected that PRAPIV could provide good results. Even though, the 
precision value of PRAPIV in Test3 is the largest among the 5 
methods. The larger number of discriminate features in the Test4 
and the smaller number of features in Test5 will actually increase 
the proportion of the discriminate features, so the results of all 
methods become better. Especially for the PRAPIV algorithm, its 
precision values and recall values are both the highest in Test4 and 
Test5, and its precision values are more than 10% higher than 
those of CL-Stability. Test6 has 20 more samples than the others, 
which makes the proportion of wrong labeled samples low. Hence, 
the situation in Test6 is similar to that in Test1. 

PRAPIV presents a better balance between precision and recall 
than other methods according to the results in Table 3 and Table 4. 
The recall values of the simple SVM are large, but its precision 
values are small. The SVM method is good at classification, but 
the precision of classification cannot reach 100%. The samples 
misclassified by SVM become false positives in labeling error 
detection. Compared to the SVM method, the advantage of CL-
Stability is that there are more classification results generated by 
Leave-One-Out method. Only when those classification results 
show some statistical significance, a sample will be detected as a 
wrong-labeled suspect. This advantage can help to limit the num-
ber of false positive samples, but it also makes some wrong labeled 
samples not be detected. Actually, the high precision values of CL-
Stability are at the expense of recall. The CAPIV and RAPIV algo-
rithms can keep the advantage of SVM providing high recall val-
ues, but their precision values are still very small. The reason is 
that the wrong labeled samples cause the imprecise calculations of 
the TIV values and the IIV values. The PRAPIV algorithm can 
overcome this deficiency of CAPIV and RAPIV by progressively 
correcting the suspects, so it has both the high precision and the 
high recall. The LOOE-Sensitivity algorithm always gives the 
worst results, because it uses SVM classification which cannot 
reflect the effect of perturbation. Considering the bad performance 
of the LOOE-Sensitivity algorithm, its result would not be shown 
in the experiments of microarray datasets. 

3.2 Microarray Datasets 

3.1.1 The original microarray datasets  As we mentioned in 
2.1.1, some evidences show that there may be some wrong labeled 
samples in the Colon dataset and the Breast datasets. Firstly we use 
the five methods mentioned above to test the Colon dataset and the 
Breast dataset. The results are shown in Table 5 and Table 6. The 
LOOE-Sensitivity is excluded in this section due to its bad per-
formance in artificial dataset experiments. 

For the Colon dataset, the CL-Stability detects correctly 6 sus-
pects out of 9, and it produces only 2 false positives. The other 
methods all detect 7 suspects, but the Simple SVM, CAPIV and 
RAPIV give more false positives, especially for CAPIV. The 
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PRAPIV performs better than the others because it detects the most 
suspects correctly and produces the least false positives.  

For the Breast dataset, the simple SVM, the CL-Stability, the 
CAPIV and the RAPIV all identify 5 suspect samples, and there is 
no false positive in the results of CL-Stability. The CAPIV and the 
RAPIV produce 1 false positives and the simple SVM gives 2. The 
PRAPIV detects 4 suspects with 1 false positive. 

 
Table 5. List of suspects on original Colon dataset 

 Simple 
SVM 

CL-
Stability CAPIV RAPIV PRAPIV 

T2 √ √ √   

T30 √ √ √ √ √ 

T33 √ √ √ √ √ 

T36 √ √ √ √ √ 

T37    √ √ 

N8    √ √ 

N12 √  √   

N34 √ √ √ √ √ 

N36 √ √ √ √ √ 

others N2,N7, 
N27,N39 N2, N28 

N2,T8,T9, 
T12,T25, 
N28,N40 

N28, N29, 
N40 N2, N28 

 
Table 6. List of suspects on original Breast dataset 

 Simple 
SVM 

CL-
Stability CAPIV RAPIV PRAPIV 

11      

14 √ √ √ √  

16 √ √ √ √ √ 

31 √ √ √ √ √ 
33      

40 √ √ √ √ √ 

43 √ √ √ √ √ 
45      
46      

others 19, 47  47 47 19 

3.1.2 The artificially flipped datasets  Because in the real mi-
croarray datasets we may not truly know which samples are wrong 
labeled and the datasets containing the wrong labeled samples with 
biological evidences are hard to find, we choose some microarray 
datasets and artificially flip some samples to make them wrong 
labeled. Those artificially flipped datasets is reliable, so they can 
be used to examine the methods for labeling errors detection. Note 
that for the Colon dataset and the Breast dataset, we use the puri-
fied datasets (denoted by Colon-p and Breast-p) in which the sus-
pect samples are eliminated instead of original ones.  

Then we use artificially flipped datasets to test the 5 methods. 
The datasets used here are the Colon dataset (Alon et al., 1998), 
the Breast dataset (West et al., 2001), the CNS dataset (Pomeroy et 
al., 2002), the Cervix dataset (Wong et al., 2003) and the Prostate 
dataset (Welsh et al., 2001). We randomly choose six samples for 
each dataset and run the five methods. With 50 independent ex-

periments, the mean precision values and the mean recall values 
are shown in Table 7 and Table 8 respectively for every dataset. 

For the precision values, in all datasets except for the CNS data-
set, PRAPIV dominates all other methods. CL-Stability always 
produces the second biggest precision value. For the recall values, 
the differences between the five methods are small, but usually the 
recall values of CL-Stability are the smallest. RAPIV and PRAPIV 
perform relatively better than the others for the recall values. Note 
that in the CNS dataset, the effect of PRAPIV is abnormally poor, 
where the precision value and the recall value are both the smallest. 
The performance of every method in the CNS dataset is worse than 
it is in other datasets, so this situation is similar to the artificial 
dataset Test3. Because PRAPIV depends on CL-Stability and 
RAPIV, if those two methods fail, it cannot be expected that 
PRAPIV will produce good results. 

 
Table 7. Mean precision values on the microarray datasets 

 Colon-p Breast-p CNS Cervix Prostate 
Simple SVM 0.4570 0.6696 0.3904 0.4429 0.4549 
CL-Stability 0.5040 0.7134 0.4271 0.4968 0.4972 

CAPIV 0.4414 0.6716 0.4092 0.4142 0.4207 
RAPIV 0.4346 0.6402 0.4324 0.4479 0.4515 

PRAPIV 0.7161 0.8444 0.4024 0.5571 0.8188 
 
Table 8. Mean recall values on the microarray datasets 

 Colon-p Breast-p CNS Cervix Prostate 
Simple SVM 0.8734 0.9250 0.7222 0.7889 0.8426 
CL-Stability 0.8611 0.9106 0.6944 0.7333 0.7191 

CAPIV 0.8732 0.9266 0.7222 0.8111 0.8605 
RAPIV 0.8765 0.9268 0.8056 0.7778 0.8673 

PRAPIV 0.8765 0.9146 0.5278 0.7111 0.9105 
 
In order to compare the performance of the methods extensively, 

we plot the receiver operating characteristic (ROC) curves of CL-
Stability as a function of the parameterα , CAPIV as a function of 
β, RAPIV and PRAPIV as functions of γ. For CL-Stability, the 
parameter α  is varying from n+1 to 0 in step of 1. In CAPIV and 
RAPIV, the order of magnitude of the Qi values and the Fi values 
depend on the specific datasets and they are hard to estimate be-
forehand, so the fixed values of the thresholds may not work in the 
ROC curve. Instead, we calculate yi×Qi and Fi for every sample xi. 
For CAPIV the parameterβ is varying from the largest yi×Qi to the 
smallest, and for RAPIV the parameterγ is varying from the largest 
Fi to the smallest. For PRAPIV, in the last time RAPIV is per-
formed, the parameter γ is varying as it is stated above. Also, for 
every method, 50 replicates were performed and the average true 
positive rates and the average false positive rates are plotted in 
figure 4.  

4 CONCLUSION 
In this paper, three methods are proposed based on the definition of 
the perturbing influence value which is used to measure the effect 
of the data perturbation on the regression model. CAPIV and 
RAPIV adopt different perspectives on considering the perturbing 
influence. Compared with the LOOE-Sensitivity algorithm which 
measures the perturbing effect to the classifier, CAPIV and RAPIV 
perform better in every situation. Based on RAPIV, we develop the 
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PRAPIV algorithm with a progressive correction procedure in 
which CL-Stability is used to test the suspect samples identified by 
RAPIV. Experimental results show that the PRAPIV algorithm can 

increase the precision ratio while maintaining the high recall ratio. 
Because PRAPIV depends on RAPIV and CL-Stability, when 
RAPIV and CL-Stability fail to detect the suspects precisely, 
PRAPIV cannot perform well. 
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