238 research outputs found

    Quantum Ion-Acoustic Waves in Single-Walled Carbon Nanotubes Studied with a Quantum Hydrodynamic Model

    Get PDF
    The quantum ion-acoustic waves in single-wall carbon nanotubes are studied with the quantum hydrodynamic model, in which the electron and ion components of the nanotubes are regarded as a two-species quantum plasma system. An analytical expression of the dispersion relation is obtained for the linear disturbance. Numerical results show that the frequency of the ion-acoustic wave strongly depends on the nanotube’s radius in the long-wavelength cases

    Gluon contribution to open heavy-meson production in heavy-ion collisions

    Full text link
    A sizable contribution to heavy quark production in high-energy hadronic and nuclear collisions comes from heavy quark-antiquark pair production from gluon splitting during the parton shower evolution. We investigate the effect of gluon-medium interaction on open heavy flavor spectra in ultra-relativistic heavy-ion collisions. The interaction of hard gluons and heavy quarks with the hot QCD medium is simulated by utilizing a Langevin transport model that simultaneously incorporates contributions from collisional and radiative processes. It is found that while the gluon splitting channel has quite an important contribution to the single DD meson production cross section, its influence on the final heavy meson nuclear modification turns out to be quite modest because the average lifetime of hard gluons is short before splitting into heavy quark-antiquark pairs during the evolution and propagation of the parton shower.Comment: 5 pages, 6 figure

    Parton Energy Loss and the Generalized Jet Transport Coefficient

    Full text link
    We revisit radiative parton energy loss in deeply inelastic scattering (DIS) off a large nucleus within the perturbative QCD approach. We calculate the gluon radiation spectra induced by double parton scattering in DIS without collinear expansion in the transverse momentum of initial gluons as in the original high-twist approach. The final radiative gluon spectrum can be expressed in terms of the convolution of hard partonic parts and unintegrated or transverse momentum dependent (TMD) quark-gluon correlations. The TMD quark-gluon correlation can be factorized approximately as a product of initial quark distribution and TMD gluon distribution which can be used to define the generalized or TMD jet transport coefficient. Under the static scattering center and soft radiative gluon approximation, we recover the result by Gylassy-Levai-Vitev (GLV) in the first order of the opacity expansion. The difference as a result of the soft radiative gluon approximation is investigated numerically under the static scattering center approximation.Comment: 33 pages in RevTeX with 30 figures, final version appeared in PRD with additional typos correcte

    Dynamic Polarization Effects in Ion Channeling Through Single-Well Carbon Nanotubs

    Get PDF
    Ion channeling through a single-wall carbon nanotube is simulated by solving Newton’s equations for ion motion at intermediate energies, under the action of both the surface-atom repulsive forces and the polarization forces due to the dynamic perturbation of the nanotube electrons. The atomic repulsion is described by a continuum potential based on the Thomas-Fermi-Moliere model, whereas the dynamic polarization of the nanotube electrons is described by a two-dimensional hydrodynamic model, giving rise to the transverse dynamic image force and the longitudinal stopping force. In the absence of centrifugal forces, a balance between the image force and the atomic repulsion is found to give rise to ion trajectories which oscillate over peripheral radial regions in the nanotube, provided the ion impact position is not too close to the nanotube wall, the impact angle is sufficiently small, and the incident speed is not too high. Otherwise, the ion is found to oscillate between the nanotube walls, passing over a local maximum of the potential in the center of the nanotube, which results from the image interaction. The full statistical analysis of 103 ion trajectories has been made to further demonstrate the actual effect of dynamic polarization on the ion channeling

    Heavy and light flavor jet quenching at RHIC and LHC energies

    Full text link
    The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter q^\hat{q} on medium temperature and jet flavor is quantitatively extracted.Comment: 6 pages, 6 figure

    Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas

    Get PDF
    Self-organized spatial structures in the light emission from the ion-ion capacitive RF plasma of a strongly electronegative gas (CF4) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio-frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations
    • …
    corecore