37 research outputs found

    Luminescent Cu(I) complex with bis(indazol-1-yl)phenylmethane as chelating ligand

    Get PDF
    The cationic Cu(I) complex [Cu(N^N)2]+, where N^N is bis(indazol-1-yl)phenylmethane, was synthesized as chloride or tetrafluoroborate salt by reacting CuCl or [Cu(NCCH3)4][BF4] with bis(indazol-1-yl)phenylmethane under mild conditions. The structure of [Cu(N^N)2]Cl was ascertained by single-crystal X-ray diffraction. The complex exhibited bright yellow emission upon excitation with near UV and violet light, attributed to triplet LLCT/MLCT transitions on the basis of experimental data and computational outcomes

    Biobased Carbon Dots: From Fish Scales to Photocatalysis

    Get PDF
    The synthesis, characterization and photoreduction ability of a new class of carbon dots made from fish scales is here described. Fish scales are a waste material that contains mainly chitin, one of the most abundant natural biopolymers, and collagen. These components make the scales rich, not only in carbon, hydrogen and oxygen, but also in nitrogen. These self-nitrogen-doped carbonaceous nanostructured photocatalyst were synthesized from fish scales by a hydrothermal method in the absence of any other reagents. The morphology, structure and optical properties of these materials were investigated. Their photocatalytic activity was compared with the one of conventional nitrogen-doped carbon dots made from citric acid and diethylenetriamine in the photoreduction reaction of methyl viologen

    Biobased Carbon Dots: From Fish Scales to Photocatalysis

    Get PDF
    he synthesis, characterization and photoreduction ability of a new class of carbon dots made from fish scales is here described. Fish scales are a waste material that contains mainly chitin, one of the most abundant natural biopolymers, and collagen. These components make the scales rich, not only in carbon, hydrogen and oxygen, but also in nitrogen. These self-nitrogen-doped carbonaceous nanostructured photocatalyst were synthesized from fish scales by a hydrothermal method in the absence of any other reagents. The morphology, structure and optical properties of these materials were investigated. Their photocatalytic activity was compared with the one of conventional nitrogen-doped carbon dots made from citric acid and diethylenetriamine in the photoreduction reaction of methyl viologen.The synthesis, characterization and photoreduction ability of a new class of carbon dots made from fish scales is here described. Fish scales are a waste material that contains mainly chitin, one of the most abundant natural biopolymers, and collagen. These components make the scales rich, not only in carbon, hydrogen and oxygen, but also in nitrogen. These self-nitrogen-doped carbonaceous nanostructured photocatalyst were synthesized from fish scales by a hydrothermal method in the absence of any other reagents. The morphology, structure and optical properties of these materials were investigated. Their photocatalytic activity was compared with the one of conventional nitrogen-doped carbon dots made from citric acid and diethylenetriamine in the photoreduction reaction of methyl viologen

    N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment

    Get PDF
    The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photo-luminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation

    Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs) have been considered to be the attractive vehicles for delivering therapeutic agents toward various tumor diseases. This study was to explore the distribution pattern, kinetic delivery of adenovirus, and therapeutic efficacy of the MSC loading of E1A mutant conditionally replicative adenovirus Adv-Stat3(-) which selectively replicated and expressed high levels of anti-sense Stat3 complementary DNA in breast cancer and melanoma cells.</p> <p>Methods</p> <p>We assessed the release ability of conditionally replicative adenovirus (CRAd) from MSC using crystal violet staining, TCID<sub>50 </sub>assay, and quantitative PCR. In vitro killing competence of MSCs carrying Adv-Stat3(-) toward breast cancer and melanoma was performed using co-culture system of transwell plates. We examined tumor tropism of MSC by Prussian blue staining and immunofluorescence. In vivo killing competence of MSCs carrying Adv-Stat3(-) toward breast tumor was analyzed by comparison of tumor volumes and survival periods.</p> <p>Results</p> <p>Adv-Stat3(-) amplified in MSCs and were released 4 days after infection. MSCs carrying Adv-Stat3(-) caused viral amplification, depletion of Stat3 and its downstream proteins, and led to significant apoptosis in breast cancer and melanoma cell lines. In vivo experiments confirmed the preferential localization of MSCs in the tumor periphery 24 hours after tail vein injection, and this localization was mainly detected in the tumor parenchyma after 72 hours. Intravenous injection of MSCs carrying Adv-Stat3(-) suppressed the Stat3 pathway, down-regulated Ki67 expression, and recruited CD11b-positive cells in the local tumor, inhibiting tumor growth and increasing the survival of tumor-bearing mice.</p> <p>Conclusions</p> <p>These results indicate that MSCs migrate to the tumor site in a time-dependent manner and could be an effective platform for the targeted delivery of CRAd and the amplification of tumor killing effects.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    CuSCN as a hole transport layer in an inorganic solution-processed planar Sb2S3 solar cell, enabling carbon-based and semitransparent photovoltaics

    Get PDF
    Sb2S3 is an emerging inorganic photovoltaic absorber material with attractive properties such as high absorption coefficient, stability, earth-abundance, non-toxicity, and low-temperature solution processability. Furthermore, with a bandgap of ca. 1.7 eV, it can also be used in semitransparent or tandem solar cell applications. Here, an inorganic wide-bandgap hole transport layer (HTL), copper thiocyanate (CuSCN), is used in an Sb2S3 solar cell employing a simple planar geometry. The compact and highly transparent CuSCN HTL was compatible with the low-cost, blade-coated carbon/Ag electrode and a semitransparent solar cell device. With Au and carbon/Ag electrodes, chemical bath deposited Sb2S3 solar cells achieved power conversion efficiencies (PCEs) of 1.75% and 1.95%, respectively. At the same time, a preliminary semitransparent Sb2S3 device with an ultrathin Au (similar to 15 nm) electrode showed a good average visible transmittance (AVT) of 26.7% at a PCE of 1.65%.Validerad;2022;Nivå 2;2022-11-29 (marisr)</p

    Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies

    No full text
    Semitransparent photovoltaic (STPV) solar cells offer an immense opportunity to expand the scope of photovoltaics to special applications such as windows, facades, skylights, and so on. These new opportunities have encouraged researchers to develop STPVs using traditional thin-film solar cell technologies (amorphous-Si, CdTe, and CIGS or emerging solar cells (organic, perovskites, and dye-sensitized). There are considerable improvements in both power conversion efficiency (PCE) and semitransparency of these STPV devices. This review studies the device structure of state-of-the-art STPV devices and thereby analyzes the different approaches toward maximizing the product of PCE and average visible transmittance. The origins of PCE losses during the opaque-to-semitransparent transition in the different STPV technologies are discussed. In addition, critical practical aspects relevant to all STPV devices, such as compatibility of the top transparent electrode with the device structure, buffer layer optimization, light management engineering, scale-up, and stability, are also reported. This overview is expected to facilitate researchers across different technologies to identify and overcome the challenges toward achieving higher light utilization efficiencies in STPVs.Validerad;2023;Nivå 2;2023-11-09 (hanlid);Full text license: CC BY</p

    Luminescent Cu(I) complex with bis(indazol-1-yl)phenylmethane as chelating ligand

    No full text
    The cationic Cu(I) complex [Cu(N^N)2]+, where N^N is bis(indazol-1-yl)phenylmethane, was synthesized as chloride or tetrafluoroborate salt by reacting CuCl or [Cu(NCCH3)4][BF4] with bis(indazol-1-yl)phenylmethane under mild conditions. The structure of [Cu(N^N)2]Cl was ascertained by single-crystal X-ray diffraction. The complex exhibited bright yellow emission upon excitation with near UV and violet light, attributed to triplet LLCT/MLCT transitions on the basis of experimental data and computational outcomes

    Threefold coordinated germanium in a GeO2 melt

    No full text
    Abstract The local structure around germanium is a fundamental issue in material science and geochemistry. In the prevailing viewpoint, germanium in GeO2 melt is coordinated by at least four oxygen atoms. However, the viewpoint has been debated for decades due to several unexplained bands present in the GeO2 melt Raman spectra. Using in situ Raman spectroscopy and density functional theory (DFT) computation, we have found a [GeOØ2]n (Ø = bridging oxygen) chain structure in a GeO2 melt. In this structure, the germanium atom is coordinated by three oxygen atoms and interacts weakly with two neighbouring non-bridging oxygen atoms. The bonding nature of the chain has been analyzed on the basis of the computational electronic structure. The results may settle down the longstanding debate on the GeO2 melt structure and modify our view on germanate chemistry
    corecore