13 research outputs found

    Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine based on 3D Tumour Models

    Get PDF
    Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds.Peer reviewe

    Royal jelly causes hypotension and vasodilation induced by increasing nitric oxide production

    No full text
    Among royal jelly’s (RJ) various biological activities, its possible antihypertension and vasorelaxation effects deserve particular attention, but the underlying mechanisms of action remain unclear. Therefore, this study used the spontaneously hypertensive rats (SHR) hypertension model and the isolated rabbit thoracic aorta rings model to explore the mechanisms underlying the hypotension and vasorelaxation effects of RJ. Rats were divided into the following groups (n = 6): WKY‐control group, SHR‐control group, and SHR‐RJ group. SHR‐RJ group was received 1 g/kg of RJ via oral administration daily for 4 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and nitric oxide (NO) level were detected. In addition, the mechanism of vasodilation of RJ was investigated using an isolated rabbit aortic ring technique. RJ significantly reduced SBP and DBP as well as increased NO levels of SHR in vivo. RJ caused vasorelaxation of the isolated aorta rings, and this effect was inhibited by atropine (M3 receptor blocker), L‐NAME (nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), and indomethacin (cyclooxygenase inhibitor). Moreover, RJ could markedly suppress the NE‐induced intracellular Ca2+ releases and high K+‐induced extracellular Ca2+ influx in denuded aortic rings. In addition, RJ can also increase cGMP levels and the production of NO in isolated aortic rings. The present study showed that RJ has antihypertensive effects and was associated with increased NO production. In addition, RJ contains muscarinic receptor agonist, possibly an acetylcholine‐like substance, and induces vasodilation through NO/cGMP pathway and calcium channels

    Royal Jelly Ameliorates Behavioral Deficits, Cholinergic System Deficiency, and Autonomic Nervous Dysfunction in Ovariectomized Cholesterol-Fed Rabbits

    No full text
    Estrogen deficiency after menopause is associated with autonomic nervous changes, leading to memory impairment and increased susceptibility to Alzheimer’s disease (AD). Royal jelly (RJ) from honeybees (Apis mellifera) has estrogenic activity. Here, we investigated whether RJ can improve behavior, cholinergic and autonomic nervous function in ovariectomized (OVX) cholesterol-fed rabbits. OVX rabbits on high-cholesterol diet were administered with RJ for 12 weeks. The results showed that RJ could significantly improve the behavioral deficits of OVX cholesterol-fed rabbits and image structure of the brain. RJ reduced body weight, blood lipid, as well as the levels of amyloid-beta (Aβ), acetylcholinesterase (AchE), and malonaldehyde (MDA) in the brain. Moreover, RJ also increased the activities of choline acetyltransferase (ChAT) and superoxide dismutase (SOD) in the brain, and enhanced heart rate variability (HRV) and Baroreflex sensitivity (BRS) in OVX cholesterol-fed rabbits. Furthermore, RJ was also shown to reduce the content of Evans blue and the expression levels of Aβ, beta-site APP cleaving enzyme 1(BACE1), and receptor for advanced glycation end products (RAGE), and increase the expression level of LDL(low density lipoprotein) receptor-related protein 1 (LRP-1) in the brain. Our findings suggested that RJ has beneficial effects in neurological disorders of postmenopausal women, which were associated with reducing cholesterol and Aβ deposition, enhancing the estrogen levels and the activities of cholinergic and antioxidant systems, and ameliorating the blood–brain barrier (BBB) permeability and restoring autonomic nervous system

    Royal Jelly Reduces Cholesterol Levels, Ameliorates Aβ Pathology and Enhances Neuronal Metabolic Activities in a Rabbit Model of Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD

    Genetic features of livestock-associated <i>Staphylococcus aureus</i> ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance

    Get PDF
    Whole-genome sequencing (WGS) was used to investigate the genetic features of the recently identified lsa(E) gene in porcine S. aureus ST9 isolates. Three quinupristin/dalfopristin-resistant isolates harboring the lsa(E) gene (two MRSA and one MSSA) were sequenced. Phylogenetic analysis of 184S. aureus genomes showed that ST9 porcine isolates belong to a distinct sequence cluster. Further analysis showed that all isolates were deficient in the recently described type IV restriction-modification system and SCCmec type XII was identified in the two MRSA isolates, which included a rare class C2 mec gene complex. A 24kb ΨSCC fragment was found in the MRSA and MSSA isolates sharing 99% nucleotide sequence homology with the ΨSCCJCSC6690 (O-2) element of a ST9 MRSA isolate from Thailand (accession number AB705453). Comparison of these ST9 isolates with 181 publically available S. aureus genomes identified 24 genes present in all (100%) ST9 isolates, that were absent from the most closely related human isolate. Our analysis suggests that the sequenced quinupristin/dalfopristin-resistant ST9 lineage represent a reservoir of mobile genetic elements associated with resistance and virulence features.</p

    Progressive genomic convergence of twoHelicobacter pyloristrains during mixed infection of a patient with chronic gastritis

    No full text
    Objective: To study the detailed nature of genomic microevolution during mixed infection with multiple Helicobacter pylori strains in an individual. Design: We sampled 18 isolates from a single biopsy from a patient with chronic gastritis and nephritis. Whole-genome sequencing was applied to these isolates, and statistical genetic tools were used to investigate their evolutionary history. Results: The genomes fall into two clades, reflecting colonisation of the stomach by two distinct strains, and these lineages have accumulated diversity during an estimated 2.8 and 4.2 years of evolution. We detected about 150 clear recombination events between the two clades. Recombination between the lineages is a continuous ongoing process and was detected on both clades, but the effect of recombination in one clade was nearly an order of magnitude higher than in the other. Imputed ancestral sequences also showed evidence of recombination between the two strains prior to their diversification, and we estimate that they have both been infecting the same host for at least 12 years. Recombination tracts between the lineages were, on average, 895 bp in length, and showed evidence for the interspersion of recipient sequences that has been observed in in vitro experiments. The complex evolutionary history of a phage-related protein provided evidence for frequent reinfection of both clades by a single phage lineage during the past 4 years. Conclusions: Whole genome sequencing can be used to make detailed conclusions about the mechanisms of genetic change of H. pylori based on sampling bacteria from a single gastric biopsy

    Capillary blood for point-of-care testing

    No full text
    <p>Clinically, blood sample analysis has been widely used for health monitoring. In hospitals, arterial and venous blood are utilized to detect various disease biomarkers. However, collection methods are invasive, painful, may result in injury and contamination, and skilled workers are required, making these methods unsuitable for use in a resource-limited setting. In contrast, capillary blood is easily collected by a minimally invasive procedure and has excellent potential for use in point-of-care (POC) health monitoring. In this review, we first discuss the differences among arterial blood, venous blood, and capillary blood in terms of the puncture sites, components, sample volume, collection methods, and application areas. Additionally, we review the most recent advances in capillary blood-based commercial products and microfluidic instruments for various applications. We also compare the accuracy of microfluidic-based testing with that of laboratory-based testing for capillary blood-based disease diagnosis at the POC. Finally, we discuss the challenges and future perspectives for developing capillary blood-based POC instruments.</p

    An Analysis of Immunoreactive Signatures in Early Stage Hepatocellular Carcinoma

    No full text
    Background: Hepatocellular carcinoma (HCC) is prevalent worldwide and early diagnosis of HCC is critical for effective treatment and optimal prognosis. Methods: Serum was screened first by immunoproteomic analysis for HCC-related tumor associated antigens (TAAs). Selected TAAs were clinically evaluated retrospectively in patients with HCC, liver cirrhosis, chronic hepatitis and healthy controls. Levels of autoantibody to the selected TAAs were measured by protein microarrays containing protein antigens of the candidate TAAs. Analyses were done by using receiver operating characteristics (ROC) to calculate diagnostic accuracy. Findings: Twenty-two candidate TAAs were assessed by protein microarray analysis in 914 participants with serum α-fetoprotein (AFP) available. Twelve candidate TAAs were statistically different in signal intensity between HCC and controls. Among them, CENPF, HSP60 and IMP-2 showed AUC (area under the curve) values of 0.826, 0.764 and 0.796 respectively for early HCC. The highest prevalence of autoantibody positivity was observed in HCC cases with BCLC tumor stage A, well-differentiated histology and Child-Pugh grade C. Specifically, 73.6% or 79.3% cases of early HCC with negative AFP were positive for autoantibody to CENPF or HSP60. Interpretation: Tumor-associated autoimmune reactions may be triggered by early stage HCCs. Measurement of serum autoantibody to TAAs may be complementary to AFP measurements and improve diagnosis of early HCC

    Household Fluorescent Lateral Flow Strip Platform for Sensitive and Quantitative Prognosis of Heart Failure Using Dual-Color Upconversion Nanoparticles

    No full text
    Heart failure (HF) is the end-stage of cardiovascular diseases, which is associated with a high mortality rate and high readmission rate. Household early diagnosis and real-time prognosis of HF at bedside are of significant importance. Here, we developed a highly sensitive and quantitative household prognosis platform (termed as UC-LFS platform), integrating a smartphone-based reader with multiplexed upconversion fluorescent lateral flow strip (LFS). Dual-color core–shell upconversion nanoparticles (UCNPs) were synthesized as probes for simultaneously quantifying two target antigens associated with HF, <i>i</i>.<i>e</i>., brain natriuretic peptide (BNP) and suppression of tumorigenicity 2 (ST2). With the fluorescent LFS, we achieved the specific detection of BNP and ST2 antigens in spiked samples with detection limits of 5 pg/mL and 1 ng/mL, respectively, both of which are of one order lower than their clinical cutoff. Subsequently, a smartphone-based portable reader and an analysis app were developed, which could rapidly quantify the result and share prognosis results with doctors. To confirm the usage of UC-LFS platform for clinical samples, we detected 38 clinical serum samples using the platform and successfully detected the minimal concentration of 29.92 ng/mL for ST2 and 17.46 pg/mL for BNP in these clinical samples. Comparing the detection results from FDA approved clinical methods, we obtained a good linear correlation, indicating the practical reliability and stability of our developed UC-LFS platform. Therefore, the developed UC-LFS platform is demonstrated to be highly sensitive and specific for sample-to-answer prognosis of HF, which holds great potential for risk assessment and health monitoring of post-treatment patients at home
    corecore