18 research outputs found

    Valuing Nature Waste Removal in the Offshore Environment Following the Deepwater Horizon Oil Spill

    Get PDF
    The offshore and deep-sea marine environment provides many ecosystem services (i.e., benefits to humans), for example: climate regulation, exploitable resources, processes that enable life on Earth, and waste removal. Unfortunately, the remote nature of this environment makes it difficult to estimate the values of these services. One service in particular, waste removal, was examined in the context of the Deepwater Horizon oil spill. Nearly 5 million barrels of oil were released into the offshore Gulf of Mexico, and 14 billion dollars were spent removing about 25% of the oil spilled. Using values for oil spill cleanup efforts, which included capping the wellhead and collecting oil, surface combustion, and surface skimming, it was calculated that waste removal, i.e., natural removal of spilled oil, saved BP over $35 billion. This large amount demonstrates the costs of offshore disasters, the importance of the offshore environment to humans, as well as the large monetary values associated with ecosystem services provided

    Economic Impact of Gulf of Mexico Ecosystem Goods and Services and Integration Into Restoration Decision-Making

    Get PDF
    Sustainability of natural resources requires balancing exploitation and conservation, enabled by management based on the best available scientific and economic information. Valuation of ecosystem goods and services is an important tool for prioritizing restoration efforts, recognizing the economic importance of conserving natural capital, and raising public awareness about the contribution of healthy ecosystems to social welfare, now and for future generations. The Deepwater Horizon oil spill (DHOS) in 2010 was a Gulf of Mexico ecological and economic disaster adding to decades-long degradation of the region’s coastal and marine environment. In 2010, revenues from provisioning ecosystem goods and services generated by the five U.S. states bordering the Gulf of Mexico contributed over 2trillionperyeartothenation’sgrossdomesticproduct,including2 trillion per year to the nation’s gross domestic product, including 660 billion from the coastal county revenues and 110billionfromoceanrevenues.MexicoandCubacontributeatleastanother110 billion from ocean revenues. Mexico and Cuba contribute at least another 40 billion per year from their Gulf coastal and ocean economies. Total economic value of Gulf ecosystem goods and services also requires valuation of nonmarket regulating, cultural, and supporting services, which are far more difficult to assess, but add billions more dollars per year. In light of this total economic value and trends in ecosystem stressors, new investment is necessary to ensure completeness, accuracy, and availability of Gulf economic impact data. Civil and criminal settlements related to the DHOS provide unprecedented opportunities for improving integration of ecosystem goods and services into decisions that affect Gulf restoration and sustainability. This paper highlights the economic contributions of Gulf ecosystem goods and services to the nation’s welfare, and recommends actions and investments required to ensure that they are valued, and integrated into decision-making

    Framework for a Community Health Observing System for the Gulf of Mexico Region: Preparing for Future Disasters

    Get PDF
    © Copyright © 2020 Sandifer, Knapp, Lichtveld, Manley, Abramson, Caffey, Cochran, Collier, Ebi, Engel, Farrington, Finucane, Hale, Halpern, Harville, Hart, Hswen, Kirkpatrick, McEwen, Morris, Orbach, Palinkas, Partyka, Porter, Prather, Rowles, Scott, Seeman, Solo-Gabriele, Svendsen, Tincher, Trtanj, Walker, Yehuda, Yip, Yoskowitz and Singer. The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop

    Book Review of \u3ci\u3e Determining the Economic Value of Water: Concepts and Methods\u3c/i\u3e by Robert A. YoungBook Review of \u3ci\u3e Determining the Economic Value of Water: Concepts and Methods\u3c/i\u3e by Robert A. Young

    Get PDF
    Water has been and will continue to be a contentious issue for policy makers, landowners, municipalities, environmentalists, and citizens who feels they have an undeniable right to clean water delivered to their homes (at least in the United States). With so many groups coming into conflict over what, at least in the West and the Great Plains, continues to be a diminishing resource per capita, an understanding of the economic value of this resource is critical. It is important to note, as Robert Young does throughout his book, that the true economic value of water goes beyond what we pay our city services each month, or the cost to farmers or ranchers for pumping and distributing that water on their land. The value of water must take into account the value of the competing uses which are sometimes difficult to price

    The Political Economy of Water Pricing Reforms, edited by Ariel Dinar

    No full text
    corecore