358 research outputs found
On-line learning of non-monotonic rules by simple perceptron
We study the generalization ability of a simple perceptron which learns
unlearnable rules. The rules are presented by a teacher perceptron with a
non-monotonic transfer function. The student is trained in the on-line mode.
The asymptotic behaviour of the generalization error is estimated under various
conditions. Several learning strategies are proposed and improved to obtain the
theoretical lower bound of the generalization error.Comment: LaTeX 20 pages using IOP LaTeX preprint style file, 14 figure
Renormalization for Discrete Optimization
The renormalization group has proven to be a very powerful tool in physics
for treating systems with many length scales. Here we show how it can be
adapted to provide a new class of algorithms for discrete optimization. The
heart of our method uses renormalization and recursion, and these processes are
embedded in a genetic algorithm. The system is self-consistently optimized on
all scales, leading to a high probability of finding the ground state
configuration. To demonstrate the generality of such an approach, we perform
tests on traveling salesman and spin glass problems. The results show that our
``genetic renormalization algorithm'' is extremely powerful.Comment: 4 pages, no figur
Fast algorithm for calculating two-photon absorption spectra
We report a numerical calculation of the two-photon absorption coefficient of
electrons in a binding potential using the real-time real-space higher-order
difference method. By introducing random vector averaging for the intermediate
state, the task of evaluating the two-dimensional time integral is reduced to
calculating two one-dimensional integrals. This allows the reduction of the
computation load down to the same order as that for the linear response
function. The relative advantage of the method compared to the straightforward
multi-dimensional time integration is greater for the calculation of non-linear
response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March,
199
Excitation of Kaluza-Klein gravitational mode
We investigate excitation of Kaluza-Klein modes due to the parametric
resonance caused by oscillation of radius of compactification. We consider a
gravitational perturbation around a D-dimensional spacetime, which we
compactify on a (D-4)-sphere to obtain a 4-dimensional theory. The perturbation
includes the so-called Kaluza-Klein modes, which are massive in 4-dimension, as
well as zero modes, which is massless in 4-dimension. These modes appear as
scalar, vector and second-rank symmetric tensor fields in the 4-dimensional
theory. Since Kaluza-Klein modes are troublesome in cosmology, quanta of these
Kaluza-Klein modes should not be excited abundantly. However, if radius of
compactification oscillates, then masses of Kaluza-Klein modes also oscillate
and, thus, parametric resonance of Kaluza-Klein modes may occur to excite their
quanta. In this paper we consider part of Kaluza-Klein modes which correspond
to massive scalar fields in 4-dimension and investigate whether quanta of these
modes are excited or not in the so called narrow resonance regime of the
parametric resonance. We conclude that at least in the narrow resonance regime
quanta of these modes are not excited so catastrophically.Comment: 15 pages LaTeX, submitted to Phys.Rev.
Obliquity of an Earth-like planet from frequency modulation of its direct imaged lightcurve: mock analysis from general circulation model simulation
Direct-imaging techniques of exoplanets have made significant progress
recently, and will eventually enable to monitor photometric and spectroscopic
signals of earth-like habitable planets in the future. The presence of clouds,
however, would remain as one of the most uncertain components in deciphering
such direct-imaged signals of planets. We attempt to examine how the planetary
obliquity produce different cloud patterns by performing a series of GCM
(General Circulation Model) simulation runs using a set of parameters relevant
for our Earth. Then we use the simulated photometric lightcurves to compute
their frequency modulation due to the planetary spin-orbit coupling over an
entire orbital period, and attempt to see to what extent one can estimate the
obliquity of an Earth-twin. We find that it is possible to estimate the
obliquity of an Earth-twin within the uncertainty of several degrees with a
dedicated 4 m space telescope at 10 pc away from the system if the stellar flux
is completely blocked. While our conclusion is based on several idealized
assumptions, a frequency modulation of a directly-imaged earth-like planet
offers a unique methodology to determine its obliquity.Comment: 29 pages, 18 figures, accepted for publication in Ap
Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes
Using first-principles total-energy pseudopotential calculations, we have
studied the properties of chains of potassium and aluminum in nanotubes. For BN
tubes, there is little interaction between the metal chains and the tubes, and
the conductivity of these tubes is through carriers located at the inner part
of the tube. In contrast, for small radius carbon nanotubes, there are two
types of interactions: charge-transfer (dominant for alkali atoms) leading to
strong ionic cohesion, and hybridization (for multivalent metal atoms)
resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show
that both effects contribute. New electronic properties related to these
confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
A String Field Theory based on Causal Dynamical Triangulations
We formulate the string field theory in zero-dimensional target space
corresponding to the two-dimensional quantum gravity theory defined through
Causal Dynamical Triangulations. This third quantization of the quantum gravity
theory allows us in principle to calculate the transition amplitudes of
processes in which the topology of space changes in time, and to include
non-trivial topologies of space-time. We formulate the corresponding
Dyson-Schwinger equations and illustrate how they can be solved iteratively.Comment: 29 pages, 4 figure
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
- …