51 research outputs found

    High-molecular-weight esters in α-pinene ozonolysis secondary organic aerosol : structural characterization and mechanistic proposal for their formation from highly oxygenated molecules

    Get PDF
    Stable high-molecular-weight esters are present in alpha-pinene ozonolysis secondary organic aerosol (SOA) with the two most abundant ones corresponding to a hydroxypinonyl ester of cis-pinic acid with a molecular weight (MW) of 368 (C19H28O7) and a diaterpenylic ester of cis-pinic acid with a MW of 358 (C17H26O8). However, their molecular structures are not completely elucidated and their relationship with highly oxygenated molecules (HOMs) in the gas phase is still unclear. In this study, liquid chromatography in combination with positive ion electrospray ionization mass spectrometry has been performed on highmolecular- weight esters present in alpha-pinene ozonolysis SOA with and without derivatization into methyl esters. Unambiguous evidence could be obtained for the molecular structure of the MW368 ester in that it corresponds to an ester of cis-pinic acid where the carboxyl substituent of the dimethylcyclobutane ring and not the methylcarboxyl substituent is esterified with 7-hydroxypinonic acid. The same linkage was already proposed in previous work for the MW358 ester (Yasmeen et al., 2010), but could be supported in the present study. Guided by the molecular structures of these stable esters, we propose a formation mechanism from gas-phase HOMs that takes into account the formation of an unstable C19H28O11 product, which is detected as a major species in alpha-pinene ozonolysis experiments as well as in the pristine forest atmosphere by chemical ionization-atmospheric pressure ionization-time-of-flight mass spectrometry with nitrate clustering (Ehn et al., 2012, 2014). It is suggested that an acyl peroxy radical related to cis-pinic acid (RO2 center dot) and an alkoxy radical related to 7-or 5-hydroxypinonic acid (R'O center dot) serve as key gas-phase radicals and combine according to a RO2 + R'O center dot -> RO3R' radical termination reaction. Subsequently, the unstable C19H28O11 HOM species decompose through the loss of oxygen or ketene from the inner part containing a labile trioxide function and the conversion of the unstable acyl hydroperoxide groups to carboxyl groups, resulting in stable esters with a molecular composition of C19H28O7 (MW368) and C17H26O8 (MW358), respectively. The proposed mechanism is supported by several observations reported in the literature. On the basis of the indirect evidence presented in this study, we hypothesize that RO2 + R'O center dot -> RO3R' chemistry is at the underlying molecular basis of high-molecular-weight ester formation upon alpha-pinene ozonolysis and may thus be of importance for new particle formation and growth in pristine forested environments

    Structural Characterisation of Dimeric Esters in α-Pinene Secondary Organic Aerosol Using N2 and CO2 Ion Mobility Mass Spectrometry

    Get PDF
    The atmospheric oxidation of monoterpenes leads to the formation of secondary organic aerosol (SOA). While numerous works have been carried out in the past to characterise SOA at a molecular level, the structural elucidation of SOA compounds remains challenging owing to the lack of authentic standard compounds. In this work, the structures of alpha-pinene originating dimeric esters in SOA with m/z [Formula: see text] and m/z [Formula: see text] were characterised using UPLC/ESI(-)IMS-TOFMSÂČ (ultra-performance liquid chromatography coupled to ion mobility spectrometry tandem time-of-flight mass spectrometry). The measured collision cross-section [Formula: see text] values were compared to theoretically calculated [Formula: see text] values. Selected product ions of dimeric compounds and the authentic standard compounds of product ions were subjected to CO₂-IMS-TOFMS for more detailed structural characterisation. Our results were consistent with previously reported subunits of the m/z 357 (terpenylic acid and cis-pinic acid), and the m/z 367 (10-hydroxy-cis-pinonic acid and cis-pinic acid) ions. The measured and calculated [Formula: see text] values of m/z 367 ions further support the conclusion of earlier structural characterisation; however, the structure of the m/z 357 ion remains vague and requires further characterisation studies with a synthesised reference compound

    AbschĂ€tzung der grĂ¶ĂŸenaufgelösten Partikelkonzentration und -zusammensetzung anhand wetterlagenorientierter experimenteller Messungen

    Get PDF
    Der Bericht "AbschĂ€tzung der grĂ¶ĂŸenaufgelösten Partikelkonzentration und -zusammensetzung anhand wetterlagenorientierter experimenteller Messungen" reprĂ€sentiert das REGKLAM-Produkt 2.2b. Auf der Grundlage von Experimenten wurde die heutige Situation analysiert und Szeanarien fĂŒr einen Temperaturanstiegt sowie fĂŒr eine Änderung der Anströmcharakteristik erarbeitet. Da die PM10-Massenkonzentrationen bereits heute Grenzwerte ĂŒberschreiten und im Rahmen der klimatischen VerĂ€nderung nicht mit einer wesentlichen Abnahme zu rechnen ist, bleibt es auch zukĂŒnftig eine wichtige Herausforderung, die Emissionen von Partikeln und deren VorlĂ€ufersubstanzen sowohl in der Stadt als auch in der großrĂ€umigen Umgebung zu vermeiden

    Extreme storms cause rapid but short‐lived shifts in nearshore subtropical bacterial communities

    Get PDF
    Climate change scenarios predict tropical cyclones will increase in both frequency and intensity, which will escalate the amount of terrestrial run‐off and mechanical disruption affecting coastal ecosystems. Bacteria are key contributors to ecosystem functioning, but relatively little is known about how they respond to extreme storm events, particularly in nearshore subtropical regions. In this study, we combine field observations and mesocosm experiments to assess bacterial community dynamics and changes in physicochemical properties during early‐ and late‐season tropical cyclones affecting Okinawa, Japan. Storms caused large and fast influxes of freshwater and terrestrial sediment – locally known as red soil pollution – and caused moderate increases of macronutrients, especially SiO2 and PO43−, with up to 25 and 0.5 ÎŒM respectively. We detected shifts in relative abundances of marine and terrestrially derived bacteria, including putative coral and human pathogens, during storm events. Soil input alone did not substantially affect marine bacterial communities in mesocosms, indicating that other components of run‐off or other storm effects likely exert a larger influence on bacterial communities. The storm effects were short‐lived and bacterial communities quickly recovered following both storm events. The early‐ and late‐season storms caused different physicochemical and bacterial community changes, demonstrating the context‐dependency of extreme storm responses in a subtropical coastal ecosystem

    Terpenylic Acid and Related Compounds from the Oxidation of α-Pinene: Implications for New Particle Formation and Growth above Forests

    Get PDF
    Novel secondary organic aerosol (SOA) products from the monoterpene α-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic and 2-hydroxyterpenylic acid, and diaterpenylic acid acetate. The structural characterizations were based on the synthesis of reference compounds and detailed interpretation of mass spectral data. Terpenylic acid and diaterpenylic acid acetate are early oxidation products generated upon both photooxidation and ozonolysis, while 2-hydroxyterpenylic acid is an abundant SOA tracer in ambient fine aerosol that can be explained by further oxidation of terpenylic acid. Quantum chemical calculations support that noncovalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. The molecular properties allow us to explain initial particle formation in laboratory chamber experiments and are suggested to play a role in new particle formation and growth above forests, a natural phenomenon that has fascinated scientists for more than a century

    Source apportionment and impact of long-range transport on carbonaceous aerosol particles in central Germany during HCCT-2010

    Get PDF
    The identification of different sources of the carbonaceous aerosol (organics and black carbon) was investigated at a mountain forest site located in central Germany from September to October 2010 to characterize incoming air masses during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) experiment. The near-PM1 chemical composition, as measured by a high-resolution time-offlight aerosol mass spectrometer (HR-ToF-AMS), was dominated by organic aerosol (OA; 41 %) followed by sulfate (19 %) and nitrate (18 %). Source apportionment of the OA fraction was performed using the multilinear engine (ME-2) approach, resulting in the identification of the following five factors: hydrocarbon-like OA (HOA; 3% of OA mass), biomass burning OA (BBOA; 13 %), semi-volatilelike OA (SV-OOA; 19 %), and two oxygenated OA (OOA) factors. The more oxidized OOA (MO-OOA, 28 %) was interpreted as being influenced by aged, polluted continental air masses, whereas the less oxidized OOA (LO-OOA, 37 %) was found to be more linked to aged biogenic sources. Equivalent black carbon (eBC), measured by a multi-angle absorption photometer (MAAP) represented 10% of the total particulate matter (PM). The eBC was clearly associated with HOA, BBOA, and MO-OOA factors (all together R-2=0 :83). Therefore, eBC\u27s contribution to each factor was achieved using a multi-linear regression model. More than half of the eBC (52 %) was associated with long-range transport (i.e., MO-OOA), whereas liquid fuel eBC (35 %) and biomass burning eBC (13 %) were associated with local emissions, leading to a complete apportionment of the carbonaceous aerosol. The separation between local and transported eBC was well supported by the mass size distribution of elemental carbon (EC) from Berner impactor samples. Air masses with the strongest marine influence, based on back trajectory analysis, corresponded with a low particle mass concentration (6.4-7.5 mu gm(-3)/ and organic fraction (approximate to 30 %). However, they also had the largest contribution of primary OA (HOA approximate to 4% and BBOA 15 %-20 %), which was associated with local emissions. Continental air masses had the highest mass concentration (11.4-12.6 mu gm(-3)), and a larger fraction of oxygenated OA (approximate to 45 %) indicated highly processed OA. The present results emphasize the key role played by long-range transport processes not only in the OA fraction but also in the eBC mass concentration and the importance of improving our knowledge on the identification of eBC sources

    Aerosole zur Indikation der LuftqualitĂ€t im Raum Leipzig: KorngrĂ¶ĂŸendifferenzierte chemisch-physikalische Aerosolcharakterisierung als Indikator der VerĂ€nderung der LuftqualitĂ€t gegenĂŒber 2000 in Leipzig und Sachsen

    Get PDF
    Der Bericht aus der Luftreinhaltung untersucht die Partikelzusammensetzung in der Außenluft. An vier Messorten in und um Leipzig wurden ultrafeine und feine Partikel nach Wetterlagen charakterisiert. Rund 90.000 Einzelanalysen fĂŒhrten zu den Verursachern. Bei östlicher Anströmung im Winter entstanden hohe Feinstaubwerte zu 80 % durch Kohle- und Holzheizungen und SekundĂ€r-Partikel. Dabei lag meist ĂŒberregionaler Ferntransport vor. Verkehrsemissionen dominierten bei westlicher Anströmung. Ruß, Metalle und polyzyklische Kohlenwasserstoffe reduzierten sich gegenĂŒber 2000 deutlich
    • 

    corecore