132 research outputs found

    Propionibacterium acnes as a Cause of Sarcoidosis

    Get PDF

    Immunohistochemical detection of potential microbial antigens in granulomas in the diagnosis of sarcoidosis

    Get PDF
    Sarcoidosis may have more than a single causative agent, including infectious and non-infectious agents. Among the potential infectious causes of sarcoidosis, Mycobacterium tuberculosis and Propionibacterium acnes are the most likely microorganisms. Potential latent infection by both microorganisms complicates the findings of molecular and immunologic studies. Immune responses to potential infectious agents of sarcoidosis should be considered together with the microorganisms detected in sarcoid granulomas, because immunologic reactivities to infectious agents reflect current and past infection, including latent infection unrelated to the cause of the granuloma formation. Histopathologic data more readily support P. acnes as a cause of sarcoidosis compared with M. tuberculosis, suggesting that normally symbiotic P. acnes leads to granuloma formation in some predisposed individuals with Th1 hypersensitivity against intracellular proliferation of latent P. acnes, which may be triggered by certain host or drug-induced conditions. Detection of bacterial nucleic acids in granulomas does not necessarily indicate co-localization of the bacterial proteins in the granulomas. In the histopathologic diagnosis of sarcoidosis, M. tuberculosis-associated and P. acnes-associated sarcoidosis will possibly be differentiated in some patients by immunohistochemistry with appropriate antibodies that specifically react with mycobacterial and propionibacterial antigens, respectively, for each etiology-based diagnosis and potential antimicrobial intervention against sarcoidosis

    Immunohistoochemical evaluation of GATA-3, pAKT and Ki-67 in triple negative breast carcinoma

    Get PDF
    Background: Triple-negative breast cancers lack expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor -2. These tumors have been known to be clinically aggressive. We evaluate GATA-3, pAKT and Ki-67 expression in 35 triple negative breast carcinomas.Materials and Methods: A total of 35 triple negative breast carcinomas were included in this study. The histological subtyping was done according to Japanese guidelines for breast cancer.Results: GATA-3 was positive in 60% (21/35) of tumors. High GATA-3 expression was observed in ductal carcinoma in situ.  pAKT expression was demonstrated in 85.7 % (30/35) of TNBCs. The levels of expression of GATA-3 and pAKT showed no significant association with nuclear grading. (P=0.761 and P=0.487, respectively). Ki-67 labeling index was positively correlated with nuclear grading (p&lt;0.001).Conclusion: GATA-3 expression has no relation with ER and PR expression and pAKT and GATA-3 are strongly expressed in TNBCs. </p

    CHAC1 overexpression in human gastric parietal cells with Helicobacter pylori infection in the secretory canaliculi

    Get PDF
    Background Cation transport regulator 1 (CHAC1), a newly discovered enzyme that degrades glutathione, is induced in Helicobacter pylori (H. pylori)‐infected gastric epithelial cells in culture. The CHAC1‐induced decrease in glutathione leads to an accumulation of reactive oxygen species and somatic mutations in TP53. We evaluated the possible correlation between H. pylori infection and CHAC1 expression in human gastric mucosa. Materials and Methods Both fresh‐frozen and formalin‐fixed paraffin‐embedded tissue samples of gastric mucosa with or without H. pylori infection were obtained from 41 esophageal cancer patients that underwent esophago‐gastrectomy. Fresh samples were used for real‐time polymerase chain reaction for H. pylori DNA and CHAC1 mRNA, and formalin‐fixed samples were used for immunohistochemistry with anti‐CHAC1 and anti‐H. pylori monoclonal antibodies. Double‐enzyme or fluorescence immunohistochemistry and immuno‐electron microscopy were used for further analysis. Results Significant CHAC1 overexpression was detected in H. pylori‐infected parietal cells that expressed the human proton pump/H,K‐ATPase α subunit, whereas a constitutively low level of CHAC1 mRNA expression was observed in the other samples regardless of the H. pylori infection status, reflecting the weak CHAC1 expression detected by immunohistochemistry in the fundic‐gland areas. Immuno‐electron microscopy revealed intact H. pylori cells in the secretory canaliculi of infected parietal cells. Some parietal cells exhibited positive nuclear signals for Ki67 in the neck zone of the gastric fundic‐gland mucosa with H. pylori infection. Conclusion Cation transport regulator 1 overexpression in H. pylori‐infected parietal cells may cause the H. pylori‐induced somatic mutations that contribute to the development of gastric cancer.This work was supported by the Japan Society for the Promotion of Science KAKENHI (16K19077), and by the Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and development, AMED

    Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Get PDF
    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane

    Immunohistochemical Detection of Propionibacterium acnes in Granulomas for Differentiating Sarcoidosis from Other Granulomatous Diseases Utilizing an Automated System with a Commercially Available PAB Antibody

    Get PDF
    Propionibacterium acnes is implicated in the pathogenesis of sarcoidosis. We investigated the usefulness of immunohistochemistry (IHC) with a commercially available P. acnes-specific monoclonal antibody (PAB antibody) for differentiating sarcoidosis from other granulomatous diseases. Formalin-fixed paraffin-embedded tissue samples from 94 sarcoidosis patients and 30 control patients with other granulomatous diseases were examined by the original manual IHC method. We also compared the detection frequency of P. acnes in sarcoid granulomas between manual and automated IHC methods. P. acnes was detected in sarcoid granulomas of samples obtained by transbronchial lung biopsy (64%), video-associated thoracic surgery (67%), endobronchial-ultrasound-guided transbronchial-needle aspiration (32%), lymph node biopsy (80%), and skin biopsy (80%) from sarcoidosis patients, but not in any non-sarcoid granulomas of the samples obtained from control patients. P. acnes outside granulomas, however, was frequently detected in both groups. The detection status of P. acnes in granulomas did not correlate with the clinical characteristics of sarcoidosis patients. The automated Leica system exhibited the best detection sensitivity (72%) and almost an identical localization for P. acnes in sarcoid granulomas compared with the manual method. IHC with a PAB antibody is useful for differentiating sarcoidosis from other granulomatous diseases by detecting P. acnes in granulomas. An automated method by the Leica system can be used in pathology laboratories for differential diagnosis of granulomas by IHC with the PAB antibody

    Etiologic Aspect of Sarcoidosis as an Allergic Endogenous Infection Caused by Propionibacterium acnes

    Get PDF
    Sarcoidosis is a systemic granulomatous disease of unknown etiology. Propionibacterium acnes is the only microorganism that has been isolated from sarcoid lesions. Many P. acnes have been detected in sarcoid lymph nodes using quantitative PCR and in sarcoid granulomas by in situ hybridization. P. acnes trigger factor protein causes a cellular immune response only in sarcoid patients and induces pulmonary granulomas in mice sensitized with the protein and adjuvant, but only those with latent P. acnes infection in their lungs. Eradication of P. acnes by antibiotics prevents the development of granulomas in this experimental model. Although P. acnes is the most common commensal bacterium in the lungs and lymph nodes, P. acnes-specific antibody detected the bacterium within sarcoid granulomas of these organs. P. acnes can cause latent infection in the lung and lymph node and persist in a cell-wall-deficient form. The dormant form is activated endogenously under certain conditions and proliferates at the site of latent infection. In patients with P. acnes hypersensitivity, granulomatous inflammation is triggered by intracellular proliferation of the bacterium. Proliferating bacteria may escape granulomatous isolation, spreading to other organs. Latent P. acnes infection in systemic organs can be reactivated by another triggering event, leading to systemic sarcoidosis
    corecore