1,513 research outputs found

    Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon

    Get PDF
    Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on

    Exponents of 2-multiarrangements and multiplicity lattices

    Full text link
    We introduce a concept of multiplicity lattices of 2-multiarrangements, determine the combinatorics and geometry of that lattice, and give a criterion and method to construct a basis for derivation modules effectively.Comment: 14 page

    Properties of hadron and quark matter studied with a molecular dynamics

    Full text link
    We study the hadron-quark phase transition in a molecular dynamics (MD) of quark degrees of freedom. The hadron state at low density and temperature, and the deconfined quark state at high density and temperature are observed in our model. We investigate the equations of state and draw the phase-diagram at wide baryon density and temperature range. We also discuss the transport property, e.g. viscosity, of qqˉq\bar{q} matter. It is found that the ratio of the shear viscosity to the entropy density is less than one for quark matter.Comment: Poster presentation at Quark Matter 200

    {1122} <1123> Slip System in Magnesium

    Get PDF
    The slip mode operative in the c-axis compression of magnesium was examined using precisely-oriented single crystals. From recorded stress-strain curves and observations with light and transmission electron microscopes, it was found that (1) the {1122} slip system operates at all temperatures investigated (from room temperature to 500℃), (2) the work hardening rate of this slip system is very high especially below 200℃, (3) the Burgers vector of the dislocation for the slip system is 1/3 , and (4) the dislocation has a strong preference to lie along a basal plane, which means that the edge dislocation is much less mobile than the screw dislocation. The ductility of polycrystalline magnesium is discussed from above observations

    Swimming depth of migrating silver eels Anguilla japonica released at seamounts of the West Mariana Ridge, their estimated spawning sites

    Get PDF
    Five hormone-treated female Japanese silver eels Anguilla japonica were tagged with ultrasonic transmitters and released by submersible in the West Pacific at seamounts of the West Mariana Ridge, their supposed spawning grounds. Four eels were tracked for 60 to 423 min in the vicinity of the seamounts. They did not settle at the seamounts but swam at a mean speed of 0.37 m s-1 into open water above deep ground. Their mean swimming depth ranged from 81 to 172 m. Experiments suggest that pre-matured A. japonica migrate to their spawning grounds in temperate warm water and at shallow depths

    Chamber basis of the Orlik-Solomon algebra and Aomoto complex

    Full text link
    We introduce a basis of the Orlik-Solomon algebra labeled by chambers, so called chamber basis. We consider structure constants of the Orlik-Solomon algebra with respect to the chamber basis and prove that these structure constants recover D. Cohen's minimal complex from the Aomoto complex.Comment: 16 page

    Dynamics of orbital degrees of freedom probed via isotope 121,123^{121,123} Sb nuclear quadrupole moments in Sb-substituted iron-pnictide superconductors

    Full text link
    Isotope 121,123^{121,123}Sb nuclei with large electric quadrupole moments are applied to investigate the dynamics of orbital degrees of freedom in Sb-substituted iron(Fe)-based compounds. In the parent compound LaFe(As0.6_{0.6}Sb0.4_{0.4})O, the nuclear spin relaxation rate 121,123(T11)^{121,123}(T_{1}^{-1}) at 121,123^{121,123}Sb sites was enhanced at structural transition temperature (TsT_{s}\sim 135 K), which is higher than N\'eel temperature (TNT_{\rm N}\sim125 K). The isotope ratio 123(T11)/121(T11)^{123}(T_{1}^{-1})/^{121}(T_{1}^{-1}) indicates that the electric quadrupole relaxation due to the dynamical electric field gradient at Sb site increases significantly toward TsT_{s}. It is attributed to the critically enhanced nematic fluctuations of stripe-type arrangement of Fe-3dxz3d_{xz} (or 3dyz3d_{yz}) orbitals. In the lightly electron-doped superconducting (SC) compound LaFe(As0.7_{0.7}Sb0.3_{0.3})(O0.9_{0.9}F0.1_{0.1}), the nematic fluctuations are largely suppressed in comparison with the case of the parent compound, however, it remains a small enhancement below 80 K down to the TcT_c(\sim 20 K). The results indicate that the fluctuations from both the spin and orbital degrees of freedom on the 3dxz3d_{xz}(or 3dyz3d_{yz}) orbitals can be seen in lightly electron-doped SC state of LaFeAsO-based compounds. We emphasize that isotope 121,123^{121,123}Sb quadrupole moments are sensitive local probe to identify the dynamics of orbital degrees of freedom in Fe-pnictides, which provides with a new opportunity to discuss the microscopic correlation between the superconductivity and both nematic and spin fluctuations simultaneously even in the polycrystalline samples.Comment: 7 pages, 4 figures and 1 supplemental fil
    corecore