110 research outputs found

    TGF-β/smad2シグナル伝達経路とAggregatibacter actinomycetemcomitansが誘導するヒト歯肉上皮細胞におけるアポトーシスとの関連性

    Get PDF
    広島大学(Hiroshima University)博士(歯学)Doctor of Philosophy in Dental Sciencedoctora

    RANKL-independent osteoclastogenesis in the SH3BP2 cherubism mice

    Get PDF
    Even though the receptor activator of the nuclear factor-κB ligand (RANKL) and its receptor RANK have an exclusive role in osteoclastogenesis, the possibility of RANKL/RANK-independent osteoclastogenesis has been the subject of a long-standing debate in bone biology. In contrast, it has been reported that calvarial injection of TNF-ɑ elicits significant osteoclastogenesis in the absence of RANKL/RANK in NF-κB2- and RBP-J-deficient mice, suggesting that inflammatory challenges and secondary gene manipulation are the prerequisites for RANKL/RANK-deficient mice to develop osteoclasts in vivo. Here we report that, even in the absence of RANKL (Rankl−/−), cherubism mice (Sh3bp2KI/KI) harboring the homozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) develop tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts spontaneously. The Sh3bp2KI/KIRankl−/− mice exhibit an increase in tooth exposure and a decrease in bone volume/total volume compared to Sh3bp2+/+Rankl−/− mice. The multinucleated cells were stained positively for cathepsin K. Osteoclastic marker gene expression in bone and serum TRAP5b levels were elevated in Sh3bp2KI/KIRankl−/− mice. Elevation of the serum TNF-ɑ levels suggested that TNF-ɑ is a driver for the RANKL-independent osteoclast formation in Sh3bp2KI/KI mice. Our results provide a novel mutant model that develops osteoclasts independent of RANKL and establish that the gain-of-function of SH3BP2 promotes osteoclastogenesis not only in the presence of RANKL but also in the absence of RANKL

    The Psychological Impact of ‘Mild Lockdown’ in Japan during the COVID-19 Pandemic : A Nationwide Survey under a Declared State of Emergency

    Get PDF
    This study examined the psychological distress caused by non-coercive lockdown (mild lockdown) in Japan. An online survey was conducted with 11,333 people (52.4% females; mean age = 46.3 ± 14.6 years, range = 18–89 years) during the mild lockdown in the seven prefectures most affected by COVID-19 infection. Over one-third (36.6%) of participants experienced mild-to-moderate psychological distress (Kessler Psychological Distress Scale [K6] score 5–12), while 11.5% reported serious psychological distress (K6 score ≥ 13). The estimated prevalence of depression (Patient Health Questionnaire-9 score ≥ 10) was 17.9%. Regarding the distribution of K6 scores, the proportion of those with psychological distress in this study was significantly higher when compared with the previous national survey data from 2010, 2013, 2016, and 2019. Healthcare workers, those with a history of treatment for mental illness, and younger participants (aged 18–19 or 20–39 years) showed particularly high levels of psychological distress. Psychological distress severity was influenced by specific interactional structures of risk factors: high loneliness, poor interpersonal relationships, COVID-19-related sleeplessness and anxiety, deterioration of household economy, and work and academic difficulties. Even when non-coercive lockdowns are implemented, people’s mental health should be considered, and policies to prevent mental health deterioration are needed. Cross-disciplinary public–private sector efforts tailored to each individual’s problem structure are important to address the mental health issues arising from lockdown

    Microbe-Dependent Exacerbated Alveolar Bone Destruction in Heterozygous Cherubism Mice

    Get PDF
    Cherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain‐of‐function mutations in SH3‐domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock‐in (KI) mice (Sh3bp2 KI/KI) recapitulate human cherubism by developing inflammatory lesions in the jaw. However, it remains unknown why heterozygous KI mice (Sh3bp2 KI/+) do not recapitulate the excessive jawbone destruction in human cherubism, even though all mutations are heterozygous in humans. We hypothesized that Sh3bp2 KI/+ mice need to be challenged for developing exacerbated jawbone destruction and that bacterial stimulation in the oral cavity may be involved in the mechanism. In this study, we applied a ligature‐induced periodontitis model to Sh3bp2 KI/+ mice to induce inflammatory alveolar bone destruction. Ligature placement induced alveolar bone resorption with gingival inflammation. Quantification of alveolar bone volume revealed that Sh3bp2 KI/+ mice developed more severe bone loss (male: 43.0% ± 10.6%, female: 42.6% ± 10.4%) compared with Sh3bp2 +/+ mice (male: 25.8% ± 4.0%, female: 30.9% ± 6.5%). Measurement of bone loss by the cement‐enamel junction–alveolar bone crest distance showed no difference between Sh3bp2 KI/+ and Sh3bp2 +/+ mice. The number of osteoclasts on the alveolar bone surface was higher in male Sh3bp2 KI/+ mice, but not in females, compared with Sh3bp2 +/+ mice. In contrast, inflammatory cytokine levels in gingiva were comparable between Sh3bp2 KI/+ and Sh3bp2 +/+ mice with ligatures. Genetic deletion of the spleen tyrosine kinase in myeloid cells and antibiotic treatment suppressed alveolar bone loss in Sh3bp2 KI/+ mice, suggesting that increased osteoclast differentiation and function mediated by SYK and accumulation of oral bacteria are responsible for the increased alveolar bone loss in Sh3bp2 KI/+ mice with ligature‐induced periodontitis. High amounts of oral bacterial load caused by insufficient oral hygiene could be a trigger for the initiation of jawbone destruction in human cherubism

    Impact of using a perioperative artificial endocrine pancreas in pancreatic resection

    Get PDF
    Aim: Pancreatectomy causes both hyperglycemia, secondary to surgical stress, and pancreatic diabetes, which leads to difficult-to-control postoperative blood glucose levels. We investigated whether using an artificial pancreas perioperatively to provide appropriate blood glucose control could reduce postoperative complications following pancreatectomy. Methods: We retrospectively enrolled 52 patients who underwent pancreatectomy at Tokushima University Hospital from 2015 to 2019. The most recent 26/52 patients received perioperative blood glucose control using an artificial pancreas. Postoperative blood glucose control with manual insulin injections based on a sliding scale was performed in the earlier 26 patients (controls). We compared surgical outcomes between the artificial pancreas group and the control group. Results: There was no significant difference in patients' white blood cell or neutrophil counts, prognostic nutritional index, neutrophil-lymphocyte ratio, and C-reactive protein-to-albumin ratio on postoperative day 1; however, lymphocyte counts were higher in the artificial pancreas group. The number of serious complications of Clavien-Dindo grade >IIIa was significantly lower in the artificial pancreas group (P < .05). Conclusions: Using an artificial pancreas for perioperative blood glucose control in patients undergoing pancreatectomy decreased the number of serious complications through proper management of blood glucose levels without hypoglycemia, and may influence peripheral lymphocytes

    青色発光ダイオードはオプシン3を介し大腸癌細胞のオートファジーを誘導する

    Get PDF
    Light emitting-diodes (LED) have various effects on living organisms and recent studies have shown the efficacy of visible light irradiation from LED for anticancer therapies. However, the mechanism of LED’s effects on cancer cells remains unclear. The aim of the present study was to investigate the effects of LED on colon cancer cell lines and the role of photoreceptor Opsin 3 (Opn3) on LED irradiation in vitro. Human colon cancer cells (HT-29 or HCT-116) were seeded onto laboratory dishes and irradiated with 465-nm LED at 30 mW/cm2 for 30 minutes. Cell Counting Kit-8 was used to measure cell viability, and apoptosis and caspase 3/8 expression were evaluated by AnnexinV/PI and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Autophagy and expression of LC-3 and beclin-1 were also evaluated by autophagy assays, RT-PCR and Western blotting. We further tested Opn3 knockdown by Opn3 siRNA and the Gi/o G-protein inhibitor NF023 in these assays. Viability of HT-29 and HCT-116 cells was lower in 465-nm LED-irradiated cultures than in control cultures. LC-3 and beclin-1 expressions were significantly higher in LED-irradiated cultures, and autophagosomes were detected in irradiated cells. The reductive effect of cancer cell viability following blue LED irradiation was reversed by Opn3 knockdown or NF023 treatment. Furthermore, increased LC-3 and beclin-1 expression that resulted from blue LED irradiation was suppressed by Opn3 knockdown or NF023 treatment. Blue LED irradiation suppressed the growth of colon cancer cells and Opn3 may play an important role as a photoreceptor

    Alveolar bone protection by targeting the SH3BP2-SYK axis in osteoclasts

    Get PDF
    Periodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis. Micro-CT analysis of SH3BP2-deficient (Sh3bp2 -/- ) mice challenged with ligature-induced periodontitis revealed that Sh3bp2 -/- mice develop decreased alveolar bone loss (male 14.9% ± 10.2%; female 19.0% ± 6.0%) compared with wild-type control mice (male 25.3% ± 5.8%; female 30.8% ± 5.8%). Lack of SH3BP2 did not change the inflammatory cytokine expression and osteoclast induction. Conditional knockout of SH3BP2 and SYK in myeloid lineage cells with LysM-Cre mice recapitulated the reduced bone loss without affecting both inflammatory cytokine expression and osteoclast induction, suggesting that the SH3BP2-SYK axis plays a key role in regulating alveolar bone loss by mechanisms that regulate the bone-resorbing function of osteoclasts rather than differentiation. Administration of a new SYK inhibitor GS-9973 before or after periodontitis induction reduced bone resorption without affecting inflammatory reaction in gingival tissues. In vitro, GS-9973 treatment of bone marrow-derived M-CSF-dependent macrophages suppressed tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation with decreased mineral resorption capacity even when GS-9973 was added after RANKL stimulation. Thus, the data suggest that SH3BP2-SYK is a novel signaling axis for regulating alveolar bone loss in periodontitis and that SYK can be a potential therapeutic target to suppress alveolar bone resorption in periodontal diseases
    corecore