4 research outputs found

    Nano-electromechanical Zero-dimensional Freestanding Nanogap Actuator

    Get PDF
    Micromachined free standing nanogap with metal electrodes is presented. The gap size is as small as 17 nm, and can be reduced further with electrostatic or piezoelectric actuation. The nanoscale gap is fabricated by industrial standard optical lithography and anisotropic wet chemical Si etching. Electron transport between the metal electrodes with optical stimulus enhancing photon-electron coupling (plasmon) is presented

    Atomic Transition-Based Precision And Accuracy In Micro- And Nanoscale Systems

    Full text link
    This thesis describes work on using atomic transition-based stabilization to yield high precision, high stability systems for micro- and nano-scale systems. After discussing the fundamentals of atomic precision and control loops, compact low power radio frequency plasmas are described for use in passive rubidium atomic clocks. A self-powered implementation is then described, using a radioactive isotope as the power source. Next, an atomic beat clock is described as a low power atomic frequency source. The ultimate precision in laser frequency stability due to quantum phase fluctuations is discussed. Next, a nanometrology optical ruler imaging system is described which uses an atomically frequency-stabilized laser. Simulations and experimental results are described. Finally, scanning probe nanofabrication of highly ordered pyrolytic graphite using an electrochemical etching process is described, where a feedback control system allows for fabrication of a large array

    Self-powered near field electron lithography

    No full text
    corecore