219 research outputs found

    Collective Phase Sensitivity

    Full text link
    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.Comment: 6 pages, 3 figure

    Onset of Collective Oscillation in Chemical Turbulence under Global Feedback

    Full text link
    Preceding the complete suppression of chemical turbulence by means of global feedback, a different universal type of transition, which is characterized by the emergence of small-amplitude collective oscillation with strong turbulent background, is shown to occur at much weaker feedback intensity. We illustrate this fact numerically in combination with a phenomenological argument based on the complex Ginzburg-Landau equation with global feedback.Comment: 6 pages, 8 figures; to appear in Phys. Rev.

    Collective dynamical response of coupled oscillators with any network structure

    Full text link
    We formulate a reduction theory that describes the response of an oscillator network as a whole to external forcing applied nonuniformly to its constituent oscillators. The phase description of multiple oscillator networks coupled weakly is also developed. General formulae for the collective phase sensitivity and the effective phase coupling between the oscillator networks are found. Our theory is applicable to a wide variety of oscillator networks undergoing frequency synchronization. Any network structure can systematically be treated. A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure

    Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case

    Full text link
    We theoretically investigate collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or anti-phase synchronization. We show that the macroscopic rhythms can exhibit effective anti-phase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.Comment: 15 pages, 7 figure

    Noise-induced Turbulence in Nonlocally Coupled Oscillators

    Get PDF
    We demonstrate that nonlocally coupled limit-cycle oscillators subject to spatiotemporally white Gaussian noise can exhibit a noise-induced transition to turbulent states. After illustrating noise-induced turbulent states with numerical simulations using two representative models of limit-cycle oscillators, we develop a theory that clarifies the effective dynamical instabilities leading to the turbulent behavior using a hierarchy of dynamical reduction methods. We determine the parameter region where the system can exhibit noise-induced turbulent states, which is successfully confirmed by extensive numerical simulations at each level of the reduction.Comment: 23 pages, 17 figures, to appear in Phys. Rev.

    Endogenization and excision of human herpesvirus 6 in human genomes

    Get PDF
    Sequences homologous to human herpesvirus 6 (HHV-6) are integrated within the nuclear genome of about 1% of humans, but it is not clear how this came about. It is also uncertain whether integrated HHV-6 can reactive into an infectious virus. HHV-6 integrates into telomeres, and this has recently been associated with polymorphisms affecting MOV10L1. MOV10L1 is located on the subtelomere of chromosome 22q (chr22q) and is required to make PIWI-interacting RNAs (piRNAs). As piRNAs block germline integration of transposons, piRNA-mediated repression of HHV-6 integration has been proposed to explain this association.In vitro, recombination of the HHV-6 genome along its terminal direct repeats (DRs) leads to excision from the telomere and viral reactivation, but the expected "solo-DR scar" has not been describedin vivo. Here we screened for integrated HHV-6 in 7,485 Japanese subjects using whole-genome sequencing (WGS). Integrated HHV-6 was associated with polymorphisms on chr22q. However, in contrast to prior work, we find that the reported MOV10L1 polymorphism is physically linked to an ancient endogenous HHV-6A variant integrated into the telomere of chr22q in East Asians. Unexpectedly, an HHV-6B variant has also endogenized in chr22q; two endogenous HHV-6 variants at this locus thus account for 72% of all integrated HHV-6 in Japan. We also report human genomes carrying only one portion of the HHV-6B genome, a solo-DR, supporting in vivo excision and possible viral reactivation. Together these results explain the recently-reported association between integrated HHV-6 and MOV10L1/piRNAs, suggest potential exaptation of HHV-6 in its coevolution with human chr22q, and clarify the evolution and risk of reactivation of the only intact (non-retro)viral genome known to be present in human germlines

    Pressure-induced structural phase transition and new superconducting phase in UTe2

    Full text link
    We report on the crystal structure and electronic properties of the heavy fermion superconductor UTe2 at high pressure up to 11 GPa, as investigated by X-ray diffraction and electrical resistivity experiments. The X-ray diffraction measurements under high pressure using a synchrotron light source reveal anisotropic linear compressibility of the unit cell up to 3.5 GPa, while a pressure-induced structural phase transition is observed above 3.5-4GPa at room temperature, where the body-centered orthorhombic crystal structure with the space group Immm changes into a body-centered tetragonal structure with the space group I4/mmm. The molar volume drops abruptly at the critical pressure, while the distance between the first-nearest neighbor of U atoms increases, implying a switch from the heavy electronic states to the weakly correlated electronic states. Surprisingly, a new superconducting phase at pressures higher than 7 GPa was detected at Tsc above 2K with a relatively low upper-critical field, Hc2(0). The resistivity above 3.5GPa, thus, in the high-pressure tetragonal phase, shows a large drop below 230 K, which may also be related to a considerable change from the heavy electronic states to the weakly correlated electronic states.Comment: 11 pages, 9 figure
    corecore