412 research outputs found

    Variations in the squamous part of the occipital bone in medieval and contemporary cranial series from Bulgaria

    Get PDF
    The squamous part of the occipital bone is a place of many different variations. They are a result of faulty ossification in the occipital squama or due to the presence of sutural bones in the lambda region. As their differentiation is intricate because of the various criteria used, the issue of their recognition in the adult skull still remains difficult even though they can be clearly distinguished at a younger age. The aim of the present study was to compare the frequency of interparietal, preinterparietal and sutural bones in the lambda region in medieval male and female cranial series as well as between medieval and contemporary male series from Bulgaria. We also discuss the development of the occipital squama in order to set clearer criteria for further differentiation of such variations in the adult skull. In the reviewed 3 cranial series, the variations in the squamous portion of the occipital bone were observed with a low frequency. The incidence of preinterparietal bones was more common than the interparietal ones. The sutural bones in the lambda region were numerous in the series. No statistically significant sex or intergroup differences were established. So even if these anatomical variations are relatively rare, the understanding of them is of significance for many disciplines like anthropology, comparative and developmental anatomy, clinical and forensic medicine.

    Ferromagnetism and Lattice Distortions in the Perovskite YTiO3_3

    Full text link
    The thermodynamic properties of the ferromagnetic perovskite YTiO3_3 are investigated by thermal expansion, magnetostriction, specific heat, and magnetization measurements. The low-temperature spin-wave contribution to the specific heat, as well as an Arrott plot of the magnetization in the vicinity of the Curie temperature TC≃27T_C\simeq27 K, are consistent with a three-dimensional Heisenberg model of ferromagnetism. However, a magnetic contribution to the thermal expansion persists well above TCT_C, which contrasts with typical three-dimensional Heisenberg ferromagnets, as shown by a comparison with the corresponding model system EuS. The pressure dependences of TCT_C and of the spontaneous moment MsM_s are extracted using thermodynamic relationships. They indicate that ferromagnetism is strengthened by uniaxial pressures p∥a\mathbf{p}\parallel \mathbf{a} and is weakened by uniaxial pressures p∥b,c\mathbf{p}\parallel \mathbf{b},\mathbf{c} and hydrostatic pressure. Our results show that the distortion along the aa- and bb-axes is further increased by the magnetic transition, confirming that ferromagnetism is favored by a large GdFeO3_3-type distortion. The c-axis results however do not fit into this simple picture, which may be explained by an additional magnetoelastic effect, possibly related to a Jahn-Teller distortion.Comment: 12 pages, 13 figure

    Dipole-active optical phonons in YTiO_3: ellipsometry study and lattice-dynamics calculations

    Full text link
    The anisotropic complex dielectric response was accurately extracted from spectroscopic ellipsometry measurements at phonon frequencies for the three principal crystallographic directions of an orthorhombic (Pbnm) YTiO_3 single crystal. We identify all twenty five infrared-active phonon modes allowed by symmetry, 7B_1u, 9B_2u, and 9B_3u, polarized along the c-, b-, and a-axis, respectively. From a classical dispersion analysis of the complex dielectric functions \tilde\epsilon(\omega) and their inverses -1/\tilde\epsilon(\omega) we define the resonant frequencies, widths, and oscillator strengths of the transverse (TO) and longitudinal (LO) phonon modes. We calculate eigenfrequencies and eigenvectors of B_1u, B_2u, and B_3u normal modes and suggest assignments of the TO phonon modes observed in our ellipsometry spectra by comparing their frequencies and oscillator strengths with those resulting from the present lattice-dynamics study. Based on these assignments, we estimate dynamical effective charges of the atoms in the YTiO_3 lattice. We find that, in general, the dynamical effective charges in YTiO_3 lattice are typical for a family of perovskite oxides. By contrast to a ferroelectric BaTiO_3, the dynamical effective charge of oxygen related to a displacement along the c-axis does not show the anomalously large value. At the same time, the dynamical effective charges of Y and ab-plane oxygen exhibit anisotropy, indicating strong hybridization along the a-axis.Comment: 8 pages, 7 figure

    Precision Measurement of 11Li moments: Influence of Halo Neutrons on the 9Li Core

    Get PDF
    The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5)mb and mu=3.6712(3)mu_N, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the radii and quadrupole moments of the lithium isotopes.Comment: 4 pages, 4 figures, 1 tabl

    Optical response of ferromagnetic YTiO_3 studied by spectral ellipsometry

    Get PDF
    We have studied the temperature dependence of spectroscopic ellipsometry spectra of an electrically insulating, nearly stoichiometric YTiO_3 single crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response exhibits a weak but noticeable anisotropy. Using a classical dispersion analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV. Although the optical conductivity spectra are only weakly temperature dependent below 300 K, we are able to distinguish high- and low-temperature regimes with a distinct crossover point around 100 K. The low-temperature regime in the optical response coincides with the temperature range in which significant deviations from Curie-Weiss mean field behavior are observed in the magnetization. Using an analysis based on a simple superexchange model, the spectral weight rearrangement can be attributed to intersite d_i^1d_j^1 \longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig consistent changes in optical spectra around 2.9 eV can be associated with the high-spin-state (^3T_1) optical transition. This indicates that other mechanisms, such as weakly dipole-allowed p-d transitions and/or exciton-polaron excitations, can contribute significantly to the optical band at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is significantly suppressed and anisotropic, which we associate with complex spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3
    • …
    corecore