22,784 research outputs found

    N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei

    Full text link
    We examine the effects of the additional term of the type eλNpNn\sim e^{- \lambda' N_pN_n} on the recently proposed empirical formula for the lowest excitation energy of the 2+2^+ states in even-even nuclei. This study is motivated by the fact that this term carries the favorable dependence of the valence nucleon numbers dictated by the NpNnN_pN_n scheme. We show explicitly that there is not any improvement in reproducing Ex(21+)E_x(2_1^+) by including the extra NpNnN_pN_n term. However, our study also reveals that the excitation energies Ex(21+)E_x(2_1^+), when calculated by the NpNnN_pN_n term alone (with the mass number AA dependent term), are quite comparable to those calculated by the original empirical formula.Comment: 14 pages, 5 figure

    (2,2)-Formalism of General Relativity: An Exact Solution

    Get PDF
    I discuss the (2,2)-formalism of general relativity based on the (2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian signature. In this formalism general relativity is describable as a Yang-Mills gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge symmetry is the group of the diffeomorphisms of the 2-dimensional fibre manifold. After presenting the Einstein's field equations in this formalism, I solve them for spherically symmetric case to obtain the Schwarzschild solution. Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede

    Impact of reionization on CMB polarization tests of slow-roll inflation

    Full text link
    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.

    New Hamiltonian formalism and quasi-local conservation equations of general relativity

    Full text link
    I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the (2,2) formalism without assuming isometries. In this formalism, quasi-local energy, linear momentum, and angular momentum are identified from the four Einstein's equations of the divergence-type, and are expressed geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The associated quasi-local balance equations are spelled out, and the corresponding fluxes are found to assume the canonical form of energy-momentum flux as in standard field theories. The remaining non-divergence-type Einstein's equations turn out to be the Hamilton's equations of motion, which are derivable from the {\it non-vanishing} Hamiltonian by the variational principle. The Hamilton's equations are the evolution equations along the out-going null geodesic whose {\it affine} parameter serves as the time function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasi-local quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the corresponding fluxes become the Bondi fluxes. The quasi-local angular momentum turns out to be zero for any two-surface in the flat Minkowski spacetime. I also present a candidate for quasi-local {\it rotational} energy which agrees with the Carter's constant in the asymptotic region of the Kerr spacetime. Finally, a simple relation between energy-flux and angular momentum-flux of a generic gravitational radiation is discussed, whose existence reflects the fact that energy-flux always accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex

    Better age estimations using UV-optical colours: breaking the age-metallicity degeneracy

    Get PDF
    We demonstrate that the combination of GALEX UV photometry in the FUV (~1530 angstroms) and NUV (~2310 angstroms) passbands with optical photometry in the standard U,B,V,R,I filters can efficiently break the age-metallicity degeneracy. We estimate well-constrained ages, metallicities and their associated errors for 42 GCs in M31, and show that the full set of FUV,NUV,U,B,V,R,I photometry produces age estimates that are ~90 percent more constrained and metallicity estimates that are ~60 percent more constrained than those produced by using optical filters alone. The quality of the age constraints is comparable or marginally better than those achieved using a large number of spectrscopic indices.Comment: Published in MNRAS (2007), 381, L74 (doi: 10.1111/j.1745-3933.2007.00370.x

    Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke:Pooled analysis of randomized trials

    Get PDF
    Background and Purpose: Lacunar stroke accounts for ≈25% of ischemic stroke, but optimal antiplatelet regimen to prevent stroke recurrence remains unclear. We aimed to evaluate the efficacy of antiplatelet agents in secondary stroke prevention after a lacunar stroke. Methods: We searched MEDLINE, Embase, and the Cochrane library for randomized controlled trials that reported risk of recurrent stroke or death with antiplatelet therapy in patients with lacunar stroke. We used random effects meta-analysis and evaluated heterogeneity with I2. Results: We included 17 trials with 42 234 participants (mean age 64.4 years, 65% male) and follow up ranging from 4 weeks to 3.5 years. Compared with placebo, any single antiplatelet agent was associated with a significant reduction in recurrence of any stroke (risk ratio [RR] 0.77, 0.62–0.97, 2 studies) and ischemic stroke (RR 0.48, 0.30–0.78, 2 studies), but not for the composite outcome of any stroke, myocardial infarction, or death (RR 0.89, 0.75–1.05, 2 studies). When other antiplatelet agents (ticlodipine, cilostazol, and dipyridamole) were compared with aspirin, there was no consistent reduction in stroke recurrence (RR 0.91, 0.75–1.10, 3 studies). Dual antiplatelet therapy did not confer clear benefit over monotherapy (any stroke RR 0.83, 0.68–1.00, 3 studies; ischemic stroke RR 0.80, 0.62–1.02, 3 studies; composite outcome RR 0.90, 0.80–1.02, 3 studies). Conclusions: Our results suggest that any of the single antiplatelet agents compared with placebo in the included trials is adequate for secondary stroke prevention after lacunar stroke. Dual antiplatelet therapy should not be used for long-term stroke prevention in this stroke subtype

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Jet trails and Mach cones: The interaction of microquasars with the ISM

    Full text link
    A sub-set of microquasars exhibit high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the ISM must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long term dynamical evolution and the observational properties of these microquasar bow shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{\alpha} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study
    corecore