756 research outputs found
FE implementation of HAH model using FDM-based stress update algorithm for springback prediction of AHSS sheets
The homogeneous anisotropic hardening (HAH) model was implemented into a finite element (FE) code in order to predict springback for an advanced high strength steel (AHSS) sheet sample after double-stage U-draw bending. The finite difference method (FDM) was utilized as an alternative way to calculate the derivatives of this advanced distortional plasticity model allowing the update of the equivalent plastic strain and stress tensor at each time step in the user-material subroutines (UMAT and VUMAT). The FDM makes it easier to derive the stress gradient of complex yield surfaces. The proposed FDM-based stress update algorithm was verified by comparing the springback profiles after the single- and double-stage U-draw bending tests for a DP980 sheet sample predicted with analytical and numerical approaches. In addition, the springback measurement parameters and computational efficiencies depending on both approaches were also compared. The results indicate that the computational efficiency and accuracy of the FE simulations with the FDM-based stress update algorithm were similar to those of the analytical method. © 2018 Institute of Physics Publishing. All rights reserved.11Ysciescopu
Melting of Charge/Orbital Ordered States in NdSrMnO: Temperature and Magnetic Field Dependent Optical Studies
We investigated the temperature ( 15 290 K) and the magnetic
field ( 0 17 T) dependent optical conductivity spectra of a
charge/orbital ordered manganite, NdSrMnO. With variation
of and , large spectral weight changes were observed up to 4.0 eV. These
spectral weight changes could be explained using the polaron picture.
Interestingly, our results suggested that some local ordered state might remain
above the charge ordering temperature, and that the charge/orbital melted state
at a high magnetic field (i.e. at 17 T and 4.2 K) should be a three
dimensional ferromagnetic metal. We also investigated the first order phase
transition from the charge/orbital ordered state to ferromagnetic metallic
state using the - and % -dependent dielectric constants . In
the charge/orbital ordered insulating state, was positive and
. With increasing and , was
increased up to the insulator-metal phase boundaries. And then,
abruptly changed into negative and , which was
consistent with typical responses of a metal. Through the analysis of using an effective medium approximation, we found that the melting
of charge/orbital ordered states should occur through the percolation of
ferromagnetic metal domains.Comment: submitted to Phys. Rev.
Molecular and functional expression of anion exchangers in cultured normal human nasal epithelial cells
AIMS:
Anions have an important role in the regulation of airway surface liquid (ASL) volume, viscosity and pH. However, functional localization and regulation of anion exchangers (AEs) have not been clearly described. The aim of this study was to investigate the regulation of AE mRNA expression level in accordance with mucociliary differentiation and the functional expression of AEs cultured normal human nasal epithelial (NHNE) cells.
METHODS:
Nasal mucosal specimens from three patients are obtained and serially cultured cells are subjected to morphological examinations, RT-PCR, Western blot analysis and immunocytochemistry. AE activity is assessed by pHi measurements.
RESULTS:
Expression of ciliated cells on the apical membrane and expression of MUC5AC, a marker of mucous differentiation, increased with time. AE2 and SLC26A4 mRNA expression decreased as mucociliary differentiation progressed, and AE4, SLC26A7 and SLC26A8 mRNA expression increased on the 14th and 28th day after confluence. Accordingly, AE4 protein expression also progressively increased. AE activity in 100 mM K(+) buffer solutions was nearly twofold higher than that in 5 mM K(+) buffer solutions. Moreover, only luminal AE activity increased about fourfold over the control in the presence of 5 microM forskolin. In the presence of 100 microM adenosine-5'-triphosphate (ATP) which evokes intracellular calcium signalling through activation of purinergic receptors, only luminal AE activity was again significantly increased. On the other hand, 500 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of most SLC4 and SLC26AE isoforms, nearly abolished AE activity in both luminal and basolateral membranes. We found that AE activity was affected by intracellular cAMP and calcium signalling in the luminal membrane and was DIDS-sensitive in both membranes of cultured NHNE cells.
CONCLUSION:
Our findings through molecular and functional studies using cultured NHNE cells suggest that AEs may have an important role in the regulation of ASL.ope
On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites
Employing a variational approach that takes into account electron-phonon and
magnetic interactions in perovskites with , the
effects of the magnetic field and the oxygen isotope substitution on the phase
diagram, the electron-phonon correlation function and the infrared absorption
at are studied. The lattice displacements show a strong correlation
with the conductivity and the magnetic properties of the system. Then the
conductivity spectra are characterized by a marked sensitivity to the external
parameters near the phase boundary.Comment: 10 figure
Performance of the CREAM calorimeter in accelerator beam test
The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results.The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results
Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels
Recent evidence suggests that the metastatic spread of head and neck squamous cell carcinomas (HNSCC) requires the function of cancer stem cells endowed with multipotency, self-renewal, and high tumorigenic potential. We demonstrated that cancer stem cells reside in perivascular niches and are characterized by high aldehyde dehydrogenase (ALDH) activity and high CD44 expression (ALDHhighCD44high) in HNSCC. Here, we hypothesize that endothelial cell-secreted interleukin-6 (IL-6) contributes to tumor progression by enhancing the migratory phenotype and survival of cancer stem cells. Analysis of tissue microarrays generated from the invasive fronts of 77 HNSCC patients followed-up for up to 11 years revealed that high expression of IL-6 receptor (IL-6R) (p=0.0217) or co-receptor gp130 (p=0.0422) correlates with low HNSCC patient survival. We observed that endothelial cell-secreted factors induce epithelial to mesenchymal transition (EMT) and enhance invasive capacity of HNSCC cancer stem cells. Conditioned medium from CRISPR/Cas9-mediated IL-6 knockout primary human endothelial cells is less chemotactic for cancer stem cells in a microfluidics-based system than medium from control endothelial cells (p < 0.05). Blockade of the IL-6 pathway with a humanized anti-IL-6R antibody (tocilizumab) inhibited endothelial cell-induced motility in vitro and decreased the fraction of cancer stem cells in vivo. Notably, xenograft HNSCC tumors vascularized with IL-6-knockout endothelial cells exhibited slower tumor growth and smaller cancer stem cell fraction. These findings demonstrate that endothelial cell-secreted IL-6 enhances the motility and survival of highly tumorigenic cancer stem cells, suggesting that endothelial cells can create a chemotactic gradient that enables the movement of carcinoma cells towards blood vessels
Search for sterile neutrino oscillation using RENO and NEOS data
We present a reactor model independent search for sterile neutrino
oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS
data. The reactor related systematic uncertainties are significantly suppressed
as both detectors are located at the same reactor complex of Hanbit Nuclear
Power Plant. The search is performed by electron
antineutrino\,() disappearance between six reactors and two
detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral
comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction
from the RENO measurement can explore reactor oscillations
to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded
region of \,eV. We also obtain a 68\% C.L. allowed
region with the best fit of \,eV and
=0.080.03 with a p-value of 8.2\%. Comparisons of
obtained reactor antineutrino spectra at reactor sources are made among RENO,
NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by
the joint reanalysis by RENO and NEOS Collaborations. (In the previous
edition, the RENO collaboration used publicly available NEOS data to evaluate
the expected neutrino spectrum at NEOS.
Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications
One limitation associated with the delivery of bioactive agents concerns the short half-life of these molecules when administered intravenously,
which results in their loss from the desired site. Incorporation of bioactive agents into depot vehicles provides a means to
increase their persistence at the disease site. Major issues are involved in the development of a proper carrier system able to deliver
the correct drug, at the desired dose, place and time. In this work, starch-poly-e-caprolactone (SPCL) microparticles were developed
for use in drug delivery and tissue engineering (TE) applications. SPCL microparticles were prepared by using an emulsion solvent
extraction/evaporation technique, which was demonstrated to be a successful procedure to obtain particles with a spherical shape (particle
size between 5 and 900 lm) and exhibiting different surface morphologies. Their chemical structure was confirmed by Fourier transform
infrared spectroscopy. To evaluate the potential of the developed microparticles as a drug delivery system, dexamethasone (DEX)
was used as model drug. DEX, a well-known component of osteogenic differentiation media, was entrapped into SPCL microparticles at
different percentages up to 93%. The encapsulation efficiency was found to be dependent on the polymer concentration and drug-to-polymer
ratio. The initial DEX release seems to be governed mainly by diffusion, and it is expected that the remaining DEX will be released
when the polymeric matrix starts to degrade. In this work it was demonstrated that SPCL microparticles containing DEX can be successfully
prepared and that these microparticular systems seem to be quite promising for controlled release applications, namely as carriers
of important differentiation agents in TE.E.R.B. thanks the Marie Curie Host Fellowships for Early Stage Research Training (EST) "Alea Jacta EST" (MEST-CT-2004-008104) for providing her with a PhD Fellowship. This work was partially supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
- …