3,387 research outputs found

    Grand challenges for biological engineering

    Get PDF
    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society

    Lynx X-Ray Microcalorimeter Cryogenic System

    Get PDF
    The Lynx x-ray microcalorimeter instrument on the Lynx X-ray Observatory requires a state-of-the-art cryogenic system to enable high-precision and high-resolution x-ray spectroscopy. The cryogenic system and components described provide the required environment using cooling technologies that are already at relatively high technology readiness levels and are progressing toward flight-compatible subsystems. These subsystems comprise a cryostat, a 4.5-K mechanical cryocooler, and an adiabatic demagnetization refrigerator that provides substantial cooling power at 50 mK

    Uric acid enhances longevity and endurance and protects the brain against ischemia

    Get PDF
    Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/− mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/− mice, but not wild-type mice, and the endurance of the UOX+/− mice is significantly greater than wild-type mice. UOX+/− mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/− mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.España, Ministerio de Educación, Cultura y Deporte EX2009–091

    Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium

    Get PDF
    Exciton-polaritons in semiconductor microcavities have been used to demonstrate quantum effects such as Bose-Einstein condensation, superfluity, and quantized vortices. However, in these experiments, the polaritons have not reached thermal equilibrium when they undergo the transition to a coherent state. This has prevented the verification of one of the canonical predictions for condensation, namely the phase diagram. In this work, we have created a polariton gas in a semiconductor microcavity in which the quasiparticles have a lifetime much longer than their thermalization time. This allows them to reach thermal equilibrium in a laser-generated confining trap. Their energy distributions are well fit by equilibrium Bose-Einstein distributions over a broad range of densities and temperatures from very low densities all the way up to the threshold for Bose-Einstein condensation. The good fits of the Bose-Einstein distribution over a broad range of density and temperature imply that the particles obey the predicted power law for the phase boundary of Bose-Einstein condensation

    Over-represented sequences located on UTRs are potentially involved in regulatory functions

    Get PDF
    Eukaryotic gene expression must be coordinated for the proper functioning of biological processes. This coordination can be achieved both at the transcriptional and post-transcriptional levels. In both cases, regulatory sequences placed at either promoter regions or on UTRs function as markers recognized by regulators that can then activate or repress different groups of genes according to necessity. While regulatory sequences involved in transcription are quite well documented, there is a lack of information on sequence elements involved in post-transcriptional regulation. We used a statistical over-representation method to identify novel regulatory elements located on UTRs. An exhaustive search approach was used to calculate the frequency of all possible n-mers (short nucleotide sequences) in 16,160 human genes of NCBI RefSeq sequences and to identify any peculiar usage of n-mers on UTRs. After a stringent filtering process, we identified circa 4,000 highly over-represented n-mers on UTRs. We provide evidence that these n-mers are potentially involved in regulatory functions. Identified n-mers overlap with previously identified binding sites for HuR and Tia1 and, AU-rich and GU-rich sequences. We determined also that over-represented n-mers are particularly enriched in a group of 159 genes directly involved in tumor formation. Finally, a method to cluster n-mer groups allowed the identification of putative gene networks.Over-represented sequences, UTRs, regulatory functions
    corecore