55,679 research outputs found
Coding overcomplete representations of audio using the MCLT
We propose a system for audio coding using the modulated complex
lapped transform (MCLT). In general, it is difficult to encode signals using
overcomplete representations without avoiding a penalty in rate-distortion
performance. We show that the penalty can be significantly reduced for
MCLT-based representations, without the need for iterative methods of
sparsity reduction. We achieve that via a magnitude-phase polar quantization
and the use of magnitude and phase prediction. Compared to systems based
on quantization of orthogonal representations such as the modulated lapped
transform (MLT), the new system allows for reduced warbling artifacts and
more precise computation of frequency-domain auditory masking functions
An LU implicity scheme for high speed inlet analysis
A numerical method is developed to analyze the inviscid flowfield of a high speed inlet by the solution of the Euler equations. The lower-upper implicit scheme in conjunction with adaptive dissipation proves to be an efficient and robust nonoscillatory shock capturing technique for high Mach number flows as well as for transonic flows
Quasilinear approach of the cumulative whistler instability in fast solar winds: Constraints of electron temperature anisotropy
Context. Solar outflows are a considerable source of free energy which
accumulates in multiple forms like beaming (or drifting) components and/or
temperature anisotropies. However, kinetic anisotropies of plasma particles do
not grow indefinitely and particle-particle collisions are not efficient enough
to explain the observed limits of these anisotropies. Instead, the
self-generated wave instabilities can efficiently act to constrain kinetic
anisotropies, but the existing approaches are simplified and do not provide
satisfactory explanations. Thus, small deviations from isotropy shown by the
electron temperature () in fast solar winds are not explained yet.
Aims. This paper provides an advanced quasilinear description of the whistler
instability driven by the anisotropic electrons in conditions typical for the
fast solar winds. The enhanced whistler-like fluctuations may constrain the
upper limits of temperature anisotropy ,
where are defined with respect to the magnetic field
direction.
Methods. Studied are the self-generated whistler instabilities, cumulatively
driven by the temperature anisotropy and the relative (counter)drift of the
electron populations, e.g., core and halo electrons. Recent studies have shown
that quasi-stable states are not bounded by the linear instability thresholds
but an extended quasilinear approach is necessary to describe them in this
case.
Results. Marginal conditions of stability are obtained from a quasilinear
theory of the cumulative whistler instability, and approach the quasi-stable
states of electron populations reported by the observations.The instability
saturation is determined by the relaxation of both the temperature anisotropy
and the relative drift of electron populations.Comment: Accepted for publication in A&
Generation of a composite grid for turbine flows and consideration of a numerical scheme
A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions
- …
