4,918 research outputs found
Minimally Invasive Social Navigation
Integrating mobile robots into human society involves the fundamental problem of navigation in crowds. This problem has been studied by considering the behaviour of humans at the level of individuals, but this representation limits the computational efficiency of motion planning algorithms. We explore the idea of representing a crowd as a flow field, and propose a formal definition of path quality based on the concept of invasiveness; a robot should attempt to navigate in a way that is minimally invasive to humans in its environment. We develop an algorithmic framework for path planning based on this definition and present experimental results that indicate its effectiveness. These results open new algorithmic questions motivated by the flow field representation of crowds and are a necessary step on the path to end-to-end implementations
FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development
Objective: It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.1187Ysciescopu
Diffusion of particles moving with constant speed
The propagation of light in a scattering medium is described as the motion of
a special kind of a Brownian particle on which the fluctuating forces act only
perpendicular to its velocity. This enforces strictly and dynamically the
constraint of constant speed of the photon in the medium. A Fokker-Planck
equation is derived for the probability distribution in the phase space
assuming the transverse fluctuating force to be a white noise. Analytic
expressions for the moments of the displacement along with an
approximate expression for the marginal probability distribution function
are obtained. Exact numerical solutions for the phase space
probability distribution for various geometries are presented. The results show
that the velocity distribution randomizes in a time of about eight times the
mean free time () only after which the diffusion approximation becomes
valid. This factor of eight is a well known experimental fact. A persistence
exponent of is calculated for this process in two dimensions
by studying the survival probability of the particle in a semi-infinite medium.
The case of a stochastic amplifying medium is also discussed.Comment: 9 pages, 9 figures(Submitted to Phys. Rev. E
Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: The Korean Sarcopenic Obesity Study (KSOS)
Objectives: Sarcopenia and visceral obesity have been suggested to aggravate each other, resulting in a vicious cycle. However, evidence based on prospective study is very limited. Our purpose was to investigate whether visceral fat promotes a decrease in skeletal muscle mass and vice versa. Methods: We observed changes in anthropometric and body composition data during a follow-up period of 27.6±2.8 months in 379 Korean men and women (mean age 51.9±14.6 years) from the Korean Sarcopenic Obesity Study (KSOS). Appendicular lean soft tissue (ALST) mass was calculated using dual-energy X-ray absorptiometry, and visceral fat area (VFA) was measured using computed tomography at baseline and follow-up examination. Results: ALST mass significantly decreased, whereas trunk and total fat mass increased in both men and women despite no significant change in weight and body mass index. In particular, women with visceral obesity at baseline had a greater decrease in ALST mass than those without visceral obesity (P=0.001). In multiple linear regression analysis, baseline VFA was an independent negative predictor of the changes in ALST after adjusting for confounding factors including age, gender, life style and body composition parameters, insulin resistance, high sensitivity C-reactive protein and vitamin D levels (P=0.001), whereas the association between baseline ALST mass and changes in VFA was not statistically significant (P=0.555). Conclusions: This longitudinal study showed that visceral obesity was associated with future loss of skeletal muscle mass in Korean adults. These results may provide novel insight into sarcopenic obesity in an aging society
Placental Growth Factor-1 and -2 Induce Hyperplasia and Invasiveness of Primary Rheumatoid Synoviocytes
Inflammation-mediated oncogenesis has been implicated in a variety of cancer types. Rheumatoid synovial tissues can be viewed as a tumor-like mass, consisting of hyperplastic fibroblast-like synoviocytes (FLSs). FLSs of rheumatoid arthritis (RA) patients have promigratory and invasive characteristics, which may be caused by chronic exposure to genotoxic stimuli, including hypoxia and growth factors. We tested whether a transformed phenotype of RA-FLSs is associated with placental growth factor (PlGF), a representative angiogenic growth factor induced by hypoxia. In this study, we identified PlGF-1 and PlGF-2 as the major PlGF isoforms in RA-FLSs. Global gene expression profiling revealed that cell proliferation, apoptosis, angiogenesis, and cell migration were mainly represented by differentially expressed genes in RA-FLSs transfected with small interfering RNA for PlGF. Indeed, PlGF-deficient RA-FLSs showed a decrease in cell proliferation, migration, and invasion, but an increase in apoptotic death in vitro. PlGF gene overexpression resulted in the opposite effects. Moreover, exogeneous PlGF-1 and PlGF-2 increased survival, migration, and invasiveness of RA-FLSs by binding their receptors, Flt-1 and neuropilin-1, and upregulating the expression of antiapoptotic molecules, pErk and Bcl2. Knockdown of PlGF transcripts reduced RA-FLS proliferation in a xenotransplantation model. Collectively, in addition to their role for neovascularization, PlGF-1 and -2 promote proliferation, survival, migration, and invasion of RA-FLSs in an autocrine and paracrine manner. These results demonstrated how primary cells of mesenchymal origin acquired an aggressive and transformed phenotype. PlGF and its receptors thus offer new targets for anti-FLS therapy.1177Ysciescopu
Hunting paleoceanographic archives of ice sheet-ocean interaction in the northwestern Ross Sea, Antarctica
The analysis of sedimentary deposits influenced by bottom currents in glaciated continental margins provides crucial insights into paleo-depositional and oceanographic conditions. These reconstructions enable the assessment of interactions between advance and retreat of grounded ice sheets and past ocean circulation patterns. However, questions regarding these interactions and their specific mechanisms remain largely unanswered due to a lack of data in this remote area. In this study, we conducted a comprehensive analysis by integrating marine geophysical data, surficial sediment cores, oceanographic measurements, and ocean circulation models. Our aim was to understand spatial and temporal variations in sedimentary and oceanographic conditions during the past glacial and interglacial periods in combination with the long-term stratigraphic evolution. By integrating and cross-referencing diverse datasets, we were able to infer how bottom-current-controlled deposits (i.e., contourites) developed along the western bathymetric high of the Central Basin in the northwestern Ross Sea margin, Antarctica. Contouritic deposits lying over and along the flanks of bathymetric highs were identified through their mound-shaped external geometry and acoustically stratified facies, characterized by reflectors pinching toward the moat. Acoustic facies and multi-beam backscatter results, in conjunction with sedimentary core data, revealed contrasting patterns. Bathymetric highs exhibited thin (10 m thick), finer-grained stratified sediments with lower backscatter. These findings indicate that seabed winnowing occurred by strong bottom current during past glacial periods as supported by sedimentological analysis. The pathways of the westward-deflected dense shelf water outflow and the westward-flowing along-slope current, as simulated by oceanographic models, explain the distinctive development of contourites influenced by bottom-current processes. Moreover, the large accumulations of sediment in the contourites, resulting from bathymetric barriers in the north of the Central Basin, may contribute to submarine slope failures
Bioinformatics research in the Asia Pacific: a 2007 update
We provide a 2007 update on the bioinformatics research in the Asia-Pacific from the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998. From 2002, APBioNet has organized the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2007 Conference was organized as the 6th annual conference of the Asia-Pacific Bioinformatics Network, on Aug. 27–30, 2007 at Hong Kong, following a series of successful events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea) and New Delhi (India). Besides a scientific meeting at Hong Kong, satellite events organized are a pre-conference training workshop at Hanoi, Vietnam and a post-conference workshop at Nansha, China. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. We have organized the papers into thematic areas, highlighting the growing contribution of research excellence from this region, to global bioinformatics endeavours
- …