190 research outputs found

    Economic behavior of information acquisition: Impact of peer grading in MOOCs

    Get PDF
    A critical issue in operating massive open online courses (MOOCs) is the scalability of providing feedback. Because it is not feasible for instructors to grade a large number of students’ assignments, MOOCs use peer grading systems. This study investigates the efficacy of that practice when student graders are rational economic agents. We characterize grading as a process of (a) acquiring information to assess an assignment’s quality and (b) reporting a score. This process entails a tradeoff between the cost of acquiring information and the benefits of accurate grading. Because the true quality is not observable, any measure of inaccuracy must reference the actions of other graders, which motivates student graders to behave strategically. We present the unique equilibrium information level and reporting strategy of a homogeneous group of student graders and then examine the outcome of peer grading. We show how both the peer grading structure and the nature of MOOC courses affect peer grading accuracy, and we identify conditions under which the process fails. There is a systematic grading bias toward the mean, which discourages students from learning. To improve current practice, we introduce a scale-shift grading scheme, theoretically examine how it can improve grading accuracy and adjust grading bias and discuss how it can be practically implemented

    Consumer Choice and Market Outcomes under Product Ambiguity

    Get PDF

    Retention of Capable New Employees under Uncertainty: Impact of Strategic Interactions

    Get PDF
    We study a game involving a firm and a newly hired employee whose capability is initially unknown to both parties. Both players observe the performance of the employee and update their common posterior beliefs about the employee’s capability. The learning process presents each party with an option: the firm can terminate an incapable employee, and a capable employee can leave the firm for greater financial remuneration elsewhere. To understand the impact of this noncooperative interaction, we examine the Markov perfect equilibrium termination strategies and payoffs that unfold. We find that in the region of sufficiently high learning rates, reducing the rate of learning can increase the equilibrium payoff for both parties. Slower learning prolongs the employment because more performance outcomes must be observed to fully assess the employee’s capability. In the region of sufficiently slow learning rates, reducing the rate of learning can benefit the firm if the employee is deemed capable but hurt the firm otherwise. Our result identifies a nonfinancial way for firms to improve retention of capable new employees

    S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S110 is a novel dinucleoside analog that could have advantages over existing DNA methyltransferase (DNMT) inhibitors such as decitabine. A potential therapeutic role for S110 is to increase fetal hemoglobin (HbF) levels to treat ÎČ-hemoglobinopathies. In these experiments the effect of S110 on HbF levels in baboons and its ability to reduce DNA methylation of the Îł-globin gene promoter in vivo were evaluated.</p> <p>Methods</p> <p>The effect of S110 on HbF and Îł-globin promoter DNA methylation was examined in cultured human erythroid progenitors and in vivo in the baboon pre-clinical model. S110 pharmacokinetics was also examined in the baboon model.</p> <p>Results</p> <p>S110 increased HbF and reduced DNA methylation of the Îł-globin promoter in human erythroid progenitors and in baboons when administered subcutaneously. Pharmacokinetic analysis was consistent with rapid conversion of S110 into the deoxycytosine analog decitabine that binds and depletes DNA.</p> <p>Conclusion</p> <p>S110 is rapidly converted into decitabine, hypomethylates DNA, and induces HbF in cultured human erythroid progenitors and the baboon pre-clinical model.</p

    Detection of primary sites in unknown primary tumors using FDG-PET or FDG-PET/CT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoma of unknown primary tumors (CUP) is present in 0.5%-9% of all patients with malignant neoplasms; only 20%-27% of primary sites are identified before the patients die. Currently, 18F-fluorodeoxy-glucose positron-emission tomography (18F-FDG PET) or PET combined with computed tomography (PET/CT) is widely used for the diagnosis of CUP. However, the diagnostic yield of the primary site varies. The aim of this study was to determine whether PET or PET/CT has additional advantages over the conventional diagnostic workup in detecting the primary origin of CUP.</p> <p>Findings</p> <p>Twenty patients with unknown primary tumors that underwent PET or PET/CT were included in this study. For all patients, the conventional diagnostic workup was unsuccessful in detecting the primary sites. Among 20 patients, 11 had PET scans. The remaining nine patients had PET/CT. In all 20 patients, neither the PET nor PET/CT identified the primary site of the tumor, including six cases with cervical lymph node metastases. The PET and PET/CT revealed sites of FDG uptake other than those associated with known metastases in seven patients, but these findings did not influence patient management or therapy. Two patients had unnecessary invasive diagnostic procedures due to false positive results on the PET or PET/CT.</p> <p>Conclusions</p> <p>Although it is inconclusive because of small sample size of the study, the additional value of PET or PET/CT for the detection of primary sites in patients with CUP might be less than expected; especially in patients that have already had extensive conventional diagnostic workups. Further study is needed to confirm this finding.</p

    Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application.</p> <p>Results</p> <p>In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by <it>CaMV </it>35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells.</p> <p>Conclusions</p> <p>In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants.</p

    An Integrated Approach to the Prediction of Chemotherapeutic Response in Patients with Breast Cancer

    Get PDF
    BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities

    Activation of Hif1α by the Prolylhydroxylase Inhibitor Dimethyoxalyglycine Decreases Radiosensitivity

    Get PDF
    Hypoxia inducible factor 1α (Hif1α) is a stress responsive transcription factor, which regulates the expression of genes required for adaption to hypoxia. Hif1α is normally hydroxylated by an oxygen-dependent prolylhydroxylase, leading to degradation and clearance of Hif1α from the cell. Under hypoxic conditions, the activity of the prolylhydroxylase is reduced and Hif1α accumulates. Hif1α is also constitutively expressed in tumor cells, where it is associated with resistance to ionizing radiation. Activation of the Hif1α transcriptional regulatory pathway may therefore function to protect normal cells from DNA damage caused by ionizing radiation. Here, we utilized the prolylhydroxylase inhibitor dimethyloxalylglycine (DMOG) to elevate Hif1α levels in mouse embryonic fibroblasts (MEFs) to determine if DMOG could function as a radioprotector. The results demonstrate that DMOG increased Hif1α protein levels and decreased the sensitivity of MEFs to ionizing radiation. Further, the ability of DMOG to function as a radioprotector required Hif1α, indicating a key role for Hif1α's transcriptional activity. DMOG also induced the Hif1α -dependent accumulation of several DNA damage response proteins, including CHD4 and MTA3 (sub-units of the NuRD deacetylase complex) and the Suv39h1 histone H3 methyltransferase. Depletion of Suv39h1, but not CHD4 or MTA3, reduced the ability of DMOG to protect cells from radiation damage, implicating increased histone H3 methylation in the radioprotection of cells. Finally, treatment of mice with DMOG prior to total body irradiation resulted in significant radioprotection of the mice, demonstrating the utility of DMOG and related prolylhydroxylase inhibitors to protect whole organisms from ionizing radiation. Activation of Hif1α through prolylhydroxylase inhibition therefore identifies a new pathway for the development of novel radiation protectors

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA Îłp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the ÎłA system of WÎłA,n=65 GeV is found to be consistent with a power-law behaviour σ(ÎłA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio
    • 

    corecore