12 research outputs found

    Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells

    Get PDF
    Background A. oxyphylla extract is known to possess a wide range of pharmacological activites. However, the molecular mechanism of A. oxyphylla and its bioactive compound nootkatone in colorectal cancer is unknown. Methods Our study aims to examine the role of A. oxyphylla and its bioactive compound nootkatone, in tumor suppression using several in vitro assays. Results Both A. oxyphylla extract and nootkatone exhibited antiproliferative activity in colorectal cancer cells. A. oxyphylla displayed antioxidant activity in colorectal cancer cells, likely mediated via induction of HO-1. Furthermore, expression of pro-apoptotic protein NAG-1 and cell proliferative protein cyclin D1 were increased and decreased respectively in the presence of A. oxyphylla. When examined for anticancer activity, nootkatone treatment resulted in the reduction of colony and spheroid formation. Correspondingly, nootkatone also led to increased NAG-1 expression and decreased cyclin D1 expression. The mechanism by which nootkatone suppresses cyclin D1 involves protein level regulation, whereas nootkatone increases NAG-1 expression at the transcriptional level. In addition to having PPARγ binding activity, nootkatone also increases EGR-1 expression which ultimately results in enhanced NAG-1 promoter activity. Conclusion In summary, our findings suggest that nootkatone is an anti-tumorigenic compound harboring antiproliferative and pro-apoptotic activity.This work was supported by the Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (2018R1A2B2002923) to S.J.B. This work was also partially supported by a clinical research grant (NCC1810150) provided by the National Cancer Center to J.R. and S.J.B. The Fig. 7 Nootkatone controls the NAG-1 expression at the transcriptional level. a Nootkatone increases NAG-1 promoter activity. HCT-116 cells were transfected with pNAG-1 − 1086/+ 41 luciferase and pRL-null plasmid. The cells were treated with EtOH or various concentrations of nootkatone for 24 h, and luciferase activity was measured. The y-axis refers to the ratio of firefly luciferase over renillar luciferase activity. The EtOH-treated cells were set as 1.0. Statistical significance was displayed as *p < 0.05, ***p < 0.001 versus EtOH-treated cells. The data represent mean ± SD from three independent experiments. b Three deletion NAG-1 promoter constructs were co-transfected with pRL-null vector into HCT-116 cells. The cells were treated with EtOH or 100 μM of nootkatone for 24 h, and luciferase activity was measured. Fold induction refers to the ratio of luciferase activity in nootkatone-treated cells versus EtOH-treated cells. Statistical significance was displayed as **p < 0.01 and ***p < 0.001 versus EtOH-treated cells. The data represent mean ± SD from three independent experiments. c HCT-116 cells were co-transfected with wild type pNAG-1 − 133/+ 41 in the presence of empty or EGR-1 expression vector. Cells were subsequently treated with 100 μM nootkatone for 24 h. The results are presented as means ± S.D. of three independent transfections. d Western blot of EGR-1 protein in the presence of nootkatone. β-actin was used as loading control. e Luciferase activity of EGR-1 promoter-luciferase construct (pEGR-1260-LUC). The cells were treated with EtOH or nootkatone for 24 h prior to measurement of luciferase activity. Fold induction refers to the ratio of luciferase activity in nootkatone-treated cells compared to EtOH-treated cells. Statistical significance represented as *p < 0.05, ***p < 0.001 versus EtOH-treated cells. n.s. represents not significant. The data represent mean ± SD from four independent experiments Yoo et al. BMC Cancer (2020) 20:881 Page 10 of 12 funding agency did not have any influence in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization

    No full text
    This paper presents a novel computational integral imaging reconstruction (CIIR) method using elemental image blending to eliminate the normalization process in CIIR. Normalization is commonly used in CIIR to address uneven overlapping artifacts. By incorporating elemental image blending, we remove the normalization step in CIIR, leading to decreased memory consumption and computational time compared to those of existing techniques. We conducted a theoretical analysis of the impact of elemental image blending on a CIIR method using windowing techniques, and the results showed that the proposed method is superior to the standard CIIR method in terms of image quality. We also performed computer simulations and optical experiments to evaluate the proposed method. The experimental results showed that the proposed method enhances the image quality over that of the standard CIIR method, while also reducing memory usage and processing time

    Re-Calibration and Lens Array Area Detection for Accurate Extraction of Elemental Image Array in Three-Dimensional Integral Imaging

    No full text
    This paper presents a new method for extracting an elemental image array in three-dimensional (3D) integral imaging. To reconstruct 3D images in integral imaging, as the first step, a method is required to accurately extract an elemental image array from a raw captured image. Thus, several methods have been discussed to extract an elemental image array. However, the accuracy is sometimes degraded due to inaccurate edge detection, image distortions, optical misalignment, and so on. Especially, small pixel errors can deteriorate the performance of an integral imaging system with a lens array. To overcome the problem, we propose a postprocessing method for the accurate extraction of an elemental image array. Our method is a unified version of an existing method and proposed postprocessing techniques. The proposed postprocessing consists of re-calibration and lens array area detection. Our method reuses the results from an existing method, and it then improves the results via the proposed postprocessing techniques. To evaluate the proposed method, we perform optical experiments for 3D objects and provide the resulting images. The experimental results indicate that the proposed postprocessing techniques improve an existing method for extracting an elemental image array in integral imaging. Therefore, we expect the proposed techniques to be applied to various applications of integral imaging system

    Photothermally Triggered Fast Responding Hydrogels Incorporating a Hydrophobic Moiety for Light-Controlled Microvalves

    No full text
    Iron oxide nanoparticles dispersed within a thermally responsive poly­(<i>N</i>-isopropylacrylamide) (PNIPAm) hydrogel matrix effectively convert the photo energy of visible light of modest intensity into thermal energy, providing the efficient means to trigger changes in volumetric swelling of hydrogels. However, long irradiation time (on the order of minutes) and modest volume change limit their applications that need fast response and/or large volume change. In this work, we found that the degree of volume change triggered by light could be maximized by adjusting the lower critical solution temperature (LCST) of the hydrogels. On the basis of the evidence in this investigation, we can develop highly responsive hydrogels that show rapid and significant light-induced volume change, which could be achieved by incorporating a hydrophobic <i>N</i>,<i>N</i>-diethylacrylamide moiety in the PNIPAm network. This enhanced responsiveness led to the successful application of this material in a remote-controllable microvalve for microfluidic devices operated by light illumination within a few seconds

    Phytogenic fabrication of iron oxide nanoparticles and evaluation of their in vitro antibacterial and cytotoxic activity

    No full text
    Several metal-based nanoparticles (NPs) have been found to be toxic and are known to exert adverse health outcomes with irreversible side effects. This highlights the need to discover effective, stable, and biocompatible therapeutic components using natural sources. Here, a hexane extract of Nigella sativa seeds was used to synthesize iron oxide NPs (NS-IONPs) embedded with N. sativa phytoconstituents. The extract acted as a reducing agent that restricted the size of the NS-IONPs to 5–6 nm, signifying the potential to be cleared through the renal system. The fabricated NS-IONPs had a prominent effect on pathogenic gram-negative bacteria, E. coli (19.3 mm) and Salmonella typhi (14.2 mm) and lung cancer cells (lowest IC50 of 18.75 µg/mL) mainly by binding to the phospholipid components of the cell membrane. This resulted in cell shrinkage and further inhibited cell growth. Transmission electron microscopy analyses revealed that the mechanisms of cellular NP uptake varied depending on the cell type. Accumulation of NS-IONPs inside the cell increased BAX expression and arrested the cells at the G0/G1 phase, thereby conspicuously extending the G0 phase to initiate necrosis. Thus, these finding suggest that the synthesized NS-IONPs exhibited high antibacterial activity and effective cytotoxicity against cancer cell lines A549 and HCT116 compared to IONPs. The innovation of the current study is that the biogenic fabrication of IONPs is simple and cost effective results in stable nanomaterial, NS-IONPs with potential antibacterial and anticancer activity, which can be explored furthermore for various biomedical applications

    Development of Multimodal Antibacterial Surfaces Using Porous Amine-Reactive Films Incorporating Lubricant and Silver Nanoparticles

    No full text
    Anti-biofouling has been improved by passive or active ways. Passive antifouling strategies aim to prevent the initial adsorption of foulants, while active strategies aim to eliminate proliferative fouling by destruction of the chemical structure and inactivation of the cells. However, neither passive antifouling strategies nor active antifouling strategies can solely resist biofouling due to their inherent limitations. Herein, we successfully developed multimodal antibacterial surfaces for waterborne and airborne bacteria with the benefit of a combination of antiadhesion (passive) and bactericidal (active) properties of the surfaces. We elaborated multifunctionalizable porous amine reactive (PAR) polymer films from poly(pentafluorophenyl acrylate) (PPFPA). Pentafluorophenyl ester groups in the PAR films facilitate creation of multiple functionalities through a simple postmodification under mild condition, based on their high reactivity toward various primary amines. We introduced amine-containing poly(dimethylsiloxane) (amine-PDMS) and dopamine into the PAR films, resulting in infusion of antifouling silicone oil lubricants and formation of bactericidal silver nanoparticles (AgNP5), respectively. As a result, the PAR film-based lubricant-infused AgNPs-incorporated surfaces demonstrate outstanding antibacterial effects toward both waterborne and airborne Escherichia coli, suggesting a new door for development of an effective multimodal anti-biofouling surface.N

    Highly Specific Peptide-Mediated Cuvette-Form Localized Surface Plasmon Resonance (LSPR)-Based Fipronil Detection in Egg

    No full text
    Herein, we have developed peptide-coated gold nanoparticles (AuNPs) based on localized surface plasmon resonance (LSPR) sensor chips that can detect fipronil with high sensitivity and selectivity. The phage display technique has been exploited for the screening of highly specific fipronil-binding peptides for the selective detection of the molecule. LSPR sensor chips are fabricated initially by attaching uniformly synthesized AuNPs on the glass substrate, followed by the addition of screened peptides. The parameters, such as the peptide concentration of 20 &micro;g mL&minus;1 and the reaction time of 30 min, are further optimized to maximize the efficacy of the fabricated LSPR sensor chips. The sensing analysis is performed systematically under standard fipronil solutions and spike samples from eggs. The developed sensor has shown excellent sensitivity towards both standard solutions and spike samples with limit of detection (LOD) values of 0.01 ppb, respectively. Significantly, the developed LSPR sensor chips offer distinct features, such as a facile fabrication approach, on-site sensing, rapid analysis, cost-effectiveness, and the possibility of mass production, in which the chips can be effectively used as a promising and potential on-site detection tool for the estimation of fipronil
    corecore