108 research outputs found

    A Machine Learning Method for Predicting Driving Range of Battery Electric Vehicles

    Get PDF
    It is of great significance to improve the driving range prediction accuracy to provide battery electric vehicle users with reliable information. A model built by the conventional multiple linear regression method is feasible to predict the driving range, but the residual errors between -3.6975 km and 3.3865 km are relatively unfaithful for real-world driving. The study is innovative in its application of machine learning method, the gradient boosting decision tree algorithm, on the driving range prediction which includes a very large number of factors that cannot be considered by conventional regression methods. The result of the machine learning method shows that the maximum prediction error is 1.58 km, the minimum prediction error is -1.41 km, and the average prediction error is about 0.7 km. The predictive accuracy of the gradient boosting decision tree is compared against that of the conventional approaches. Document type: Articl

    Synergistic Treatment of Tumor by Targeted Biotherapy and Chemotherapy via Site-Specific Anchoring of Aptamers on DNA Nanotubes

    Get PDF
    Background: Aptamers have been widely used as targeted therapeutic agents due to its relatively small physical size, flexible structure, high specificity, and selectivity. Aptamers functionalized nanomaterials, not only enhance the targeting of nanomaterials, but can also improve the stability of the aptamers. We developed aptamer C2NP (Apt) conjugated straight DNA nanotubes (S-DNT-Apt) and twisted DNA nanotubes (T-DNT-Apt) as nanocarriers for doxorubicin (DOX). Methods: The twisted DNA nanotubes (T-DNT) and straight DNA nanotubes (S-DNT) were assembled with a scaffold and hundreds of staples. Apt was site-specifically anchored on DNA nanotubes with either different spatial distribution (3 or 6 nm) or varied stoichiometry (15Apt or 30Apt). The developed nanocarriers were characterized with agarose gel electrophoresis and transmission electron microscopy. The drug loading and release in vitro were evaluated by measuring the fluorescence intensity of DOX using a microplate reader. The stability of DNT in cell culture medium plus 10% of FBS was evaluated by agarose gel electrophoresis. The cytotoxicity of DNA nanostructures against K299 cells was tested with a standard CCK8 method. Cellular uptake, cell apoptosis, cell cycle and reactive oxygen species level were investigated by flow cytometry. The expression of p53 was examined by Western Blot. Results: T-DNT-30Apt-6 exhibited the highest cytotoxicity when the concentration of Apt was 120 nM. After intercalation of DOX, the cytotoxicity of DOX@T-DNT-30Apt-6 was further enhanced due to the combination of chemotherapy of DOX and biotherapy of Apt. The enhanced cytotoxicity of DOX@T-DNT-30Apt-6 can be explained by the increase in the cellular uptake, cell apoptosis and intracellular ROS levels. Additionally, the interaction between Apt and its receptor CD30 could upregulate the expression of p53. Conclusion: These results demonstrate that both stoichiometry and spatial arrangement of Apt on T-DNT-Apt influence the anticancer activity. The developed twisted DNA nanotubes may be a solution for the synergistic treatment of cancer

    Epac1 is involved in cell cycle progression in lung cancer through PKC and Cx43 regulation

    Get PDF
    Introduction. The exchange protein directly activated by cAMP (Epac1), a downstream target of the second messenger cAMP, modulates multiple biological effects of cAMP, alone or in cooperation with protein kinase A (PKC). Epac1 is necessary for promoting protein kinase C (PKC) translocation and activation. The aim of the study was to assess the intensity of Epac1 and protein kinase C (PKC) immunoreactivity in lung cancer and para-carcinoma tissues, and their associations with clinical-pathological indexes. Correlations between the immunoreactivity of Epac1, PKC, A-kinase anchor protein 95 (AKAP95) and connexin43 (Cx43) were also examined. Material and methods. Epac1, Cx43 (46 cases) and PKC, AKAP95 (45 cases) immunoexpression levels were determined in tissue samples of lung cancer and in 12 samples of neighboring para-carcinoma specimens by the PV-9000 Two-step immunohistochemical technique. Results. The percentage of Epac1 positive samples was significantly lower in lung cancer tissue than in neighboring para-carcinoma specimens (37% vs. 83.3%, p < 0.05); the difference in PKC immunoreactivity was not significant (64.4% vs. 91.7%). Epac1 expression was associated with the degree of malignancy and lymph node metastasis (P < 0.05), but not with histological type (P > 0.05), whereas PKC expression was not related to these parameters. Interestingly, Epac1 expression was correlated with PKC and Cx43 expression. Moreover, PKC expression was correlated with AKAP95 expression. Conclusion. Normal Epac1 expression may suppress lung cancer occurrence and metastasis, and its downregulation is involved in cell cycle progression in lung cancer through PKC and Cx43 regulation.

    Associations between perioperative sleep patterns and clinical outcomes in patients with intracranial tumors: a correlation study

    Get PDF
    ObjectiveAlthough the quality of perioperative sleep is gaining increasing attention in clinical recovery, its impact role remains unknown and may deserve further exploration. This study aimed to investigate the associations between perioperative sleep patterns and clinical outcomes among patients with intracranial tumors.MethodsA correlation study was conducted in patients with intracranial tumors. Perioperative sleep patterns were assessed using a dedicated sleep monitor for 6 consecutive days. Clinical outcomes were gained through medical records and follow-up. Spearman's correlation coefficient and multiple linear regression analysis were applied to evaluate the associations between perioperative sleep patterns and clinical outcomes.ResultsOf 110 patients, 48 (43.6%) were men, with a median age of 57 years. A total of 618 days of data on perioperative sleep patterns were collected and analyzed. Multiple linear regression models revealed that the preoperative blood glucose was positively related to the preoperative frequency of awakenings (β = 0.125; 95% CI = 0.029–0.221; P = 0.011). The level of post-operative nausea and vomiting was negatively related to perioperative deep sleep time (β = −0.015; 95% CI = −0.027–−0.003; P = 0.015). The level of anxiety and depression was negatively related to perioperative deep sleep time, respectively (β = −0.048; 95% CI = −0.089–0.008; P = 0.020, β = −0.041; 95% CI = −0.076–0.006; P = 0.021). The comprehensive complication index was positively related to the perioperative frequency of awakenings (β = 3.075; 95% CI = 1.080–5.070; P = 0.003). The post-operative length of stay was negatively related to perioperative deep sleep time (β = −0.067; 95% CI = −0.113–0.021; P = 0.005). The Pittsburgh Sleep Quality Index was positively related to perioperative sleep onset latency (β = 0.097; 95% CI = 0.044–0.150; P < 0.001) and negatively related to perioperative deep sleep time (β = −0.079; 95% CI = −0.122–0.035; P < 0.001).ConclusionPerioperative sleep patterns are associated with different clinical outcomes. Poor perioperative sleep quality, especially reduced deep sleep time, has a negative impact on clinical outcomes. Clinicians should, therefore, pay more attention to sleep quality and improve it during the perioperative period.Clinical trial registrationhttp://www.chictr.org.cn, identifier: ChiCTR2200059425

    Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells

    No full text
    The inhalation anesthetic isoflurane has been reported to induce caspase activation and apoptosis, which may lead to learning and memory impairment. However, the underlying mechanisms of these effects are largely unknown. Isoflurane has been shown to induce elevation of cytosol calcium levels, accumulation of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore, reduction in mitochondria membrane potential, and release of cytochrome c. The time course of these effects, however, remains to be determined. Therefore, we performed a pilot study to determine the effects of treatment with isoflurane for various times on ROS levels in HEK-293 cells. The cells were treated with 2% isoflurane plus 21% O2 and 5% CO2 for 15, 30, 60, or 90 min. We then used fluorescence imaging and microplate fluorometer to detect ROS levels. We show that 2% isoflurane for 60 or 90 min, but not 15 or 30 min, induced ROS accumulation in the cells. These data illustrated that isoflurane could cause time-dependent effects on ROS levels. These findings have established a system to further determine the time course effects of isoflurane on cellular and mitochondria function. Ultimately, the studies would elucidate, at least partially, the underlying mechanisms of isoflurane-induced cellular toxicity

    An approach to finding the attacks on the cryptographic protocols

    No full text

    Stable Magnetic Hot Spots for Simultaneous Concentration and Ultrasensitive Surface-Enhanced Raman Scattering Detection of Solution Analytes

    No full text
    A simple and robust strategy is reported in this Article for the synthesis of stable magnetic surface-enhanced Raman scattering (SERS) hot spots in superparamagnetic, raspberry-shaped, mesoscopic gold particles that are composed of superparamagnetic Fe<sub>3</sub>O<sub>4</sub> cores, amorphous SiO<sub>2</sub> mediation shells, and outer individual Au nanoparticles. The average interparticle gaps between the Au nanoparticles can be finely tuned by controlling the synthesis conditions, resulting in the formation of adequate SERS hot spots. The magnetic cores provide the capability to concentrate solution analytes adsorbed on the surfaces of the composite particles with the assistance of an external magnetic field, leading to ultrasensitive SERS detection of target species with concentration as low as femtomolar

    Cooperative U-Turn Merging Behaviors and Their Impacts on Road Traffic in CVIS Environment

    No full text
    U-turn behavior of vehicle is one of the main causes of urban traffic congestion and accidents. A collaborative U-turn merging control algorithm is studied with collision avoidance and delay minimization for vehicles under Cooperative Vehicle Infrastructure System (CVIS) environment. Two control strategies, zip merging and platoon merging control, are proposed. The applicability of these two strategies is compared from the perspective of efficiency and driving comfort. The cellular automaton simulation system composed of a two-way four-lane traffic flow with a U-turn facility in middle of road is established with cooperative control algorithm imbedded. The influence of cooperative U-turn merging behaviors on traffic performance is evaluated by analyzing the arrival rates of main lane and U-turn vehicles and their relationship between one another. The simulation results show that the arrival rate of vehicles on target lane has a great impact on traffic delay. The cooperative control can improve the traffic flow only in the condition that the arrival rate of vehicles on target lane is less than 0.7. It provides some practical references for transportation agencies to meet efficiency requirements of the U-turn section when they apply cooperative control strategy
    • …
    corecore