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Abstract
Introduction. The exchange protein directly activated by cAMP (Epac1), a downstream target of the second 
messenger cAMP, modulates multiple biological effects of cAMP, alone or in cooperation with protein kinase A  
(PKC). Epac1 is necessary for promoting protein kinase C (PKC) translocation and activation. The aim of the 
study was to assess the intensity of Epac1 and protein kinase C (PKC) immunoreactivity in lung cancer and 
para-carcinoma tissues, and their associations with clinical-pathological indexes. Correlations between the immu-
noreactivity of Epac1, PKC, A-kinase anchor protein 95 (AKAP95) and connexin43 (Cx43) were also examined. 
Material and methods. Epac1, Cx43 (46 cases) and PKC, AKAP95 (45 cases) immunoexpression levels were 
determined in tissue samples of lung cancer and in 12 samples of neighboring para-carcinoma specimens by the 
PV-9000 Two-step immunohistochemical technique.
Results. The percentage of Epac1 positive samples was significantly lower in lung cancer tissue than in neigh-
boring para-carcinoma specimens (37% vs. 83.3%, p < 0.05); the difference in PKC immunoreactivity was not 
significant (64.4% vs. 91.7%). Epac1 expression was associated with the degree of malignancy and lymph node 
metastasis (P < 0.05), but not with histological type (P > 0.05), whereas PKC expression was not related to 
these parameters. Interestingly, Epac1 expression was correlated with PKC and Cx43 expression. Moreover, 
PKC expression was correlated with AKAP95 expression.
Conclusion. Normal Epac1 expression may suppress lung cancer occurrence and metastasis, and its downregu-
lation is involved in cell cycle progression in lung cancer through PKC and Cx43 regulation. (Folia Histochemica 
et Cytobiologica 2018, Vol. 56, No. 1, 21–26)
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Introduction

The exchange protein directly activated by cAMP 
(Epac1), a downstream target of the second messen-
ger cAMP, modulates multiple biological effects of 
cAMP, alone or in cooperation with protein kinase A  

(PKA) [1]. Epac1, in turn, acts upstream of phospho-
lipase C (PLC) and phospholipase D (PLD), both of 
which were necessary for promoting PKCϵ translo-
cation to the plasma membrane and activation [2].  
AKAP95, protein kinase A-anchoring protein 95, 
mediates phosphorylation of target proteins by combi-
nation with the type II R subunit of PKA [3]. Connexin 
43 (Cx43) is a gap junction (GJ) protein that forms a 
transmembrane protein channel between cells, and 
promotes communication and exchange of molecules 
between adjacent cells. Cx43 plays an important reg-
ulatory role in cell proliferation, differentiation and 
homeostasis [4, 5]. Cx43 expression is decreased or 
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lost in many cancers and is significantly associated 
with disease progression and unfavorable prognosis 
[6]. The AKAP95 and Cx43 proteins interact with each 
other and participate in cell cycle regulation; their 
binding and separation show periodic and dynamic 
changes with cell cycle progression [7]. Epac1 and 
PKA cooperatively enhance functional GJ neo-for-
mation in cardiomyocytes by the accumulation of 
Cx43 [8]. These findings collectively suggested that 
Epac1, PKC, AKAP95 and Cx43 may act synergisti-
cally in lung cancer to regulate cell cycle progression. 
Therefore, the current study aimed to assess the im-
munoexpression of these proteins in lung cancer and 
analyze associations between them.

Materials and methods

Patients. A total of 51 lung cancer tissue specimens were 
obtained from patients with lung cancer in Shengjing Hospital 
affiliated to China Medical University TOWN between 2007 
and 2009. The study was approved by the ethics committee 
of the Xiamen University (Xiamen, China), and the written 
informed patient consents were obtained from the patients 
or the patients’ family. Pathological diagnosis was definite 
in all patients. Of these, 46 cancer tissue samples alongside  
12 control specimens were assessed by the immunohistochem-
ical method for Epac1, and 45 for PKC expression. Patients’ age 
was 59 ± 12 years (mean ± SD, range 38–79). The 12 control  
samples were specimens from the 51 above-mentioned lung 
cancer patients that were located more than 3 cm away from 
the cancerous tissue, with no cancer cells detected.

Immunochemistry. The specimens were fixed with 10% neutral 
formaldehyde, paraffin embedded, and sectioned at 4 µm. 
Citrate buffer (pH 6.0) was used for antigen retrieval at high 
pressure, and the PV-9000 2-step plus Poly-HRP Anti-Mouse/ 
/Rabbit IgG Detection System (Zhongshan Jinqiao Biotechno
logy Company, Beijing, China) was employed to assess protein 
expression. Hematoxylin was used to stain cell nuclei. Rabbit 
anti‑human primary monoclonal antibodies against Epac1 
(1:300; cat. no. ab21236) and PKC (1:300; cat. no. ab32376) 
were obtained from Abcam (Cambridge, UK). Phosphate- 
-buffered saline (PBS) was used to dilute the antibodies. The 
primary antibody was incubated with histological sections at 4°C 
overnight. PBS was used as a negative control for the antibody.

Assessment of protein immunoexpression. Brown-yellow 
staining was considered positive protein expression, with the 
lack there of indicating no protein expression. Ten different 
high power fields were assessed per section, with 200 tumor 
cells counted per field. The percentage of positive cells that 
showed presence of brown deposits was used as a metric to 
evaluate protein expression. The criteria for protein expres-
sion were as follows: “–”, no brown; “+/–”, < 25%; “+”,  
≥ 25% and < 75%; “++”, ≥ 75%. For data analysis, “+/–” 

and “–” were considered to indicate negative expression, 
and “+”and “++” indicated positive expression.

Statistical analysis. The SPSS17.0 software (SPSS Inc., 
Chicago, IL, USA) was used for all statistical analyses. Pos-
itive rates were compared by the c2 test; associations were 
analyzed by Spearman’s rank correlation analysis. P < 0.05 
was considered statistically significant.

Results

Epac1 and PKC expression levels in lung cancer 
and para-carcinoma tissues
In our previous study, we assessed AKAP95 and 
Cx43 expression levels in 51 lung cancer tissue sam-
ples [9]. The positive expression rate for AKAP95 
was significantly higher in lung cancer than in pa-
ra-carcinoma tissues (82.35% vs. 33.33%, P < 0.05); 
meanwhile, the positive expression rate for Cx43 was 
lower in lung cancer tissues than in para-carcinoma 
tissues (60.78% vs. 80%, P > 0.05). In the present 
study 46 and 45 patients of the above 51 cases were 
assessed for the Epac1 and PKC immunoreactiv-
ity, respectively. The positive expression rate for 
AKAP95 immunoreactivity of the 45 same samples 
as for PKC was 84.4%; meanwhile, the positive ex-
pression rate for Cx43 of the 46 same samples as for 
Epac1 was 58.7%. The immunoexpression pattern of 
AKAP95 and Cx43 was shown in the previous report 
[9], and therefore, the respective microphotographs 
were here not presented.

In the current study a total of 17/46 lung cancer 
patients showed positive Epac1 expression, represent-
ing a positive expression rate of 36.96%; meanwhile, 
10 cases showed positive Epac1 expression among 
the 12 control, para-carcinoma tissues, representing 
a positive expression rate of 83.33%. The difference 
was statistically significant between the two groups  
(P < 0.05) (Table 1 and Fig. 1).

Table 1. Epac1 and PKC expression in para-carcinoma and 
lung cancer tissues

Para-carcinoma Lung 
cancer

c2 P

Epac1
Positive 10 17

8.227 0.004
Negative 2 29

PKC
Positive 11 29

2.180 0.140
Negative 1 16

Epac1 and PKC expression was determined by PV-9000 Two-step immunohis-
tochemical technique as described in Methods. The difference in Epac1 positive 
expression rates between para-carcinoma and lung cancer tissue samples was 
statistically significant. No statistically significant difference in PKC expres-
sion was found between lung cancer and para-carcinoma tissue specimens.
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A total of 29/45 lung cancer tissue samples showed 
positive PKC expression, indicating a positive ex-
pression rate of 64.44%; 11 cases showed positive 
expression of the PKC protein among the 12 para-car-
cinoma tissue samples, representing a positive rate of 
91.67%; no statistically significant difference in PKC 
expression was obtained between lung cancer and 
para-carcinoma tissue specimens (P > 0.05) (Table 1  
and Fig. 1). 

Associations of Epac1 and PKC with clinical- 
-pathological parameters in lung cancer
The associations of Epac1 and PKC with clinical-patho-
logical parameters are summarized in Table 2.  
Epac1 expression in lung cancer tissues was associated 
with the degree of differentiation and lymph node me-
tastasis (P < 0.05); there was no relationship between 
Epac1 expression and the histological type (P > 0.05). 
We further assessed the associations of PKC expres-
sion in lung cancer with the degree of differentiation, 
histological type and lymph node metastasis. There 
were no significant associations of PKC expression 

with the degree of differentiation, histological type 
and lymph node metastasis (P > 0.05).

Associations of Epac1, PKC, AKAP95 and Cx43  
in lung cancer 
In the present study, the correlation between Epac1 
and PKC protein levels in lung cancer tissues was 
analyzed. In addition, the associations of these two 
proteins with AKAP95 and Cx43 were also assessed. 
Significant correlations between Epac1 and PKC, 
Epac1 and Cx43, and PKC and AKAP95 were found 
(all P < 0.05), with Spearman rank correlation coef-
ficients of 0.326, 0.367 and 0.348, respectively (Tables 
3–5). No correlations were found for other protein 
pairs (P > 0.05), e.g. Epac1 and AKAP95, and PKC 
and Cx43 (data not shown).

Discussion

Finding molecular markers with predictive and 
prognostic values is critical for precise treatment in 
cancer. Expression of the Epac1 protein, which may 

Figure 1. Epac1 (a, b, c) and PKC (d, e, f) protein expression in lung cancer tissues was assessed by immunohistochemistry 
as described in Methods. Epac1 negative expression in (a) and (b); moderate intensity of cytoplasmic Epac1 immunoreac-
tivity in (c). PKC was mainly expressed in the cytoplasm, with low expression in the nucleus: (d) minimal; (e) and (f) high 
immunoexpression. Magnification 400×.
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be involved in cell cycle regulation, was detected in 
lung cancer tissues in the current study. Epac has  
2 known isoforms, including Epac1 and Epac2, with lit-
tle functional difference ascribed to their effects. Epac 
is a family member of guanine nucleotide exchange 
factors targeting the monomeric G-protein Rap1 [10]. 
The Epac-Rap1 pathway is intimately involved in the 

regulation of cell migration and cell-cell interactions 
in a cell type dependent manner [11, 12]. Both Epac/ 
/Rap1 and PKA may be involved in smooth muscle 
relaxation and could inhibit proliferation of vascular 
smooth muscle cells [13, 14]. Epac activation through 
inhibition of MAP kinases and RhoA in human 
prostate cancer cells suggests anti-proliferative and 
anti-migratory effects for this protein [15]. In the 
present study we found that the positive rate of Epac1 
expression was significantly higher in para-carcinoma 
tissue samples than in lung cancer specimens, sug-
gesting that Epac1 may inhibit the proliferation of 
lung cancer cells, corroborating previous findings that 
Epac reduces proliferation in smooth muscle cells and 
prostate cancer cells [13–15]. However, other authors 
proposed that Epac may promote proliferation, inva-
sion and migration of prostate cancer and pancreatic 
cancer cells [16, 17]. These discrepancies suggest that 
the regulatory mechanism of the Epac protein in cell 
cycle progression may depend on cancer type.

Table 2. Associations of Epac1 and PKC protein expression with clinical-pathological parameters

Item Cases Positive Negative c2 P

Epac1 PKC Epac1 PKC Epac1 PKC Epac1 PKC Epac1 PKC

Degree of differentiation

Highly 4 4 3 3 1 1

6.220 0.245 0.045 0.884Moderately 24 24 13 15 11 9

Poorly 17 17 3 11 14 6

Histological type

Small cell lung cancer 9 9 4 6 5 3

0.546 1.79 0.909 0.617
Lung squamous carcinoma 18 17 6 13 12 4

Lung adenocarcinoma 14 14 5 8 9 6

Alveolar cell carcinoma 4 4 1 2 3 2

Lymph node

Positive 24 24 5 13 19 11
5.599 2.371 0.018 0.124

Negative 22 21 12 16 10 15

Table 3. Correlation between Epac1 and PKC immunoex-
pression levels in lung cancer

Epac1 PKC rs P

– +/– + ++

– 3 2 4 2

0.326 0.029
+/– 3 6 5 3

+ 0 2 9 1

++ 0 0 2 3

rs — Spearman’s rank correlation coefficient; n = 45 patients.

Table 4. Correlation between Cx43 and Epac1 immunoex-
pression levels in lung cancer 

Cx43 Epac1 rs P

– +/– + ++

– 1 1 1 0

0.367 0.012
+/– 6 9 1 0

+ 1 4 4 1

++ 4 3 6 4

rs — Spearman’s rank correlation coefficient; n = 46 patients.

Table 5. Correlation between AKAP95 and PKC immunoex-
pression levels in lung cancer 

AKAP95 PKC rs P

– +/– + ++

+/– 3 2 2 0

0.348 0.019+ 1 4 8 2

++ 2 4 10 7

rs — Spearman’s rank correlation coefficient; n = 45 patients.
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PKC is involved in the regulation of cell prolifera-
tion, apoptosis, and migration, by catalyzing the phos-
phorylation of target proteins [18]. At the molecular 
level PKC was shown to be a tumor suppressor [19]. 
Indeed, a meta-analysis of controlled trials assessing 
PKC inhibitors combined with chemotherapy versus 
chemotherapy alone revealed that PKC inhibitors 
significantly decrease response and disease control 
rates in non-small cell lung cancer [20]. Clinical data 
revealed lower PKC protein levels and activity in 
tumor tissue samples compared with cognate normal 
tissue specimens [21]. In our study, the positive rate 
of PKC expression in lung cancer tissues showed a 
tendency to be lower than that of adjacent ‘normal’ 
tissues, also supporting a tumor-suppressive role for 
PKC; however, the difference was not statistically 
significant.

Epac is involved in the regulation of gap junction 
formation [22–23]. PKC phosphorylates a number of 
targets, including serine residues 262, 364, 368 and 372 
of Cx43 [24–26], and may play a major role in intercel-
lular communication. Many studies have shown that 
Cx43 phosphorylation promotes intercellular com-
munication [27]. It was shown that Epac can induce 
PKC activation and Cx43 phosphorylation [28]. The 
complex cAMP-Epac2 increases Cx43 expression, and 
Epac2 overexpression inhibits glioma cell prolifera-
tion [29]. In the present study, significant correlations 
between Epac1 and PKC immunoreactivity on one 
hand, and between Epac1 and Cx43 immunoexpres-
sion on the other hand, were observed in lung cancer 
tissues, indicating that Epac1 may be involved in the 
regulation of lung cancer cell proliferation through 
the PKC and Cx43 proteins. These findings were 
consistent with previous reports [28, 29].

AKAP95 can anchor protein kinase A in the nu-
cleus, and was shown to transfer PKA to a specific 
substrate to facilitate PKA-mediated phosphorylation 
[30]. The current study showed that the levels of PKC 
and AKAP95 immunoreactivity are correlated in lung 
cancer tissues, suggesting that AKAP95 may also 
transfer PKC to the specific location; alternatively, 
PKC may be involved in AKAP95 phosphorylation.

Epac can be directly activated by cAMP, and 
AKAP95 is a cAMP-dependent protein, suggesting 
that the Epac and AKAP95 proteins may have syn-
ergistic functions in cell cycle regulation. However, 
since the expression levels of Epac1 and AKAP95 
were not correlated in lung cancer tissue in our study 
we propose that Epac1 and AKAP95 protein expres-
sion in lung cancer may be independently disturbed; 
alternatively, the observed abnormal expression levels 
may result from cell deterioration. The elucidation of 
exact mechanisms remains further studies.
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