4 research outputs found

    Biocompatible Single-Crystal Selenium Nanobelt Based Nanodevice as a Temperature-Tunable Photosensor

    Get PDF
    Selenium materials are widely used in photoelectrical devices, owing to their unique semiconductive properties. Single-crystal selenium nanobelts with large specific surface area, fine photoconductivity, and biocompatibility provide potential applications in biomedical nanodevices, such as implantable artificial retina and rapid photon detector/stimulator for optogenetics. Here, we present a selenium nanobelt based nanodevice, which is fabricated with single Se nanobelt. This device shows a rapid photo response, different sensitivities to visible light of variable wave length, and temperature-tunable property. The biocompatibility of the Se nanobelts was proved by MTT test using two cell lines. Our investigation introduced a photosensor that will be important for multiple potential applications in human visual system, photocells in energy or MEMS, and temperature-tunable photoelectrical device for optogenetics research

    Exercise Pretreatment Promotes Mitochondrial Dynamic Protein OPA1 Expression after Cerebral Ischemia in Rats

    No full text
    Exercise training is a neuroprotective strategy in cerebral ischemic injury, but the underlying mechanisms are not yet clear. In the present study, we investigated the effects of treadmill exercise pretreatment on the expression of mitochondrial dynamic proteins. We examined the expression of OPA1/DLP1/MFF/Mfn1/Mfn2, which regulatesmitochondrial fusion and fission, and cytochrome C oxidase subunits (COX subunits), which regulatemitochondrial functions, after middle cerebral artery occlusion (MCAO) in rats. T2-weighted magnetic resonance imaging (MRI) was evaluated as indices of brain edema after ischemia as well. Treadmill training pretreatment increased the expression levels of OPA1 and COXII/III/IV and alleviated brain edema, indicating that exercise pretreatment provided neuroprotection in cerebral ischemic injury via the regulation of mitochondrial dynamics and functions

    Biocompatible Single-Crystal Selenium Nanobelt Based Nanodevice as a Temperature-Tunable Photosensor

    Get PDF
    Selenium materials are widely used in photoelectrical devices, owing to their unique semiconductive properties. Single-crystal selenium nanobelts with large specific surface area, fine photoconductivity, and biocompatibility provide potential applications in biomedical nanodevices, such as implantable artificial retina and rapid photon detector/stimulator for optogenetics. Here, we present a selenium nanobelt based nanodevice, which is fabricated with single Se nanobelt. This device shows a rapid photo response, different sensitivities to visible light of variable wave length, and temperature-tunable property. The biocompatibility of the Se nanobelts was proved by MTT test using two cell lines. Our investigation introduced a photosensor that will be important for multiple potential applications in human visual system, photocells in energy or MEMS, and temperature-tunable photoelectrical device for optogenetics research
    corecore