80 research outputs found

    Detection of peanut seed vigor based on hyperspectral imaging and chemometrics

    Get PDF
    Rapid nondestructive testing of peanut seed vigor is of great significance in current research. Before seeds are sown, effective screening of high-quality seeds for planting is crucial to improve the quality of crop yield, and seed vitality is one of the important indicators to evaluate seed quality, which can represent the potential ability of seeds to germinate quickly and whole and grow into normal seedlings or plants. Meanwhile, the advantage of nondestructive testing technology is that the seeds themselves will not be damaged. In this study, hyperspectral technology and superoxide dismutase activity were used to detect peanut seed vigor. To investigate peanut seed vigor and predict superoxide dismutase activity, spectral characteristics of peanut seeds in the wavelength range of 400-1000 nm were analyzed. The spectral data are processed by a variety of hot spot algorithms. Spectral data were preprocessed with Savitzky-Golay (SG), multivariate scatter correction (MSC), and median filtering (MF), which can effectively to reduce the effects of baseline drift and tilt. CatBoost and Gradient Boosted Decision Tree were used for feature band extraction, the top five weights of the characteristic bands of peanut seed vigor classification are 425.48nm, 930.8nm, 965.32nm, 984.0nm, and 994.7nm. XGBoost, LightGBM, Support Vector Machine and Random Forest were used for modeling of seed vitality classification. XGBoost and partial least squares regression were used to establish superoxide dismutase activity value regression model. The results indicated that MF-CatBoost-LightGBM was the best model for peanut seed vigor classification, and the accuracy result was 90.83%. MSC-CatBoost-PLSR was the optimal regression model of superoxide dismutase activity value. The results show that the R2 was 0.9787 and the RMSE value was 0.0566. The results suggested that hyperspectral technology could correlate the external manifestation of effective peanut seed vigor

    Non-destructive detection of kiwifruit soluble solid content based on hyperspectral and fluorescence spectral imaging

    Get PDF
    The soluble solid content (SSC) is one of the important parameters depicting the quality, maturity and taste of fruits. This study explored hyperspectral imaging (HSI) and fluorescence spectral imaging (FSI) techniques, as well as suitable chemometric techniques to predict the SSC in kiwifruit. 90 kiwifruit samples were divided into 70 calibration sets and 20 prediction sets. The hyperspectral images of samples in the spectral range of 387 nm~1034 nm and the fluorescence spectral images in the spectral range of 400 nm~1000 nm were collected, and their regions of interest were extracted. Six spectral pre-processing techniques were used to pre-process the two spectral data, and the best pre-processing method was selected after comparing it with the predicted results. Then, five primary and three secondary feature extraction algorithms were used to extract feature variables from the pre-processed spectral data. Subsequently, three regression prediction models, i.e., the extreme learning machines (ELM), the partial least squares regression (PLSR) and the particle swarm optimization - least square support vector machine (PSO-LSSVM), were established. The prediction results were analyzed and compared further. MASS-Boss-ELM, based on fluorescence spectral imaging technique, exhibited the best prediction performance for the kiwifruit SSC, with the Rp2, Rc2 and RPD of 0.8894, 0.9429 and 2.88, respectively. MASS-Boss-PLSR based on the hyperspectral imaging technique showed a slightly lower prediction performance, with the Rp2, Rc2, and RPD of 0.8717, 0.8747, and 2.89, respectively. The outcome presents that the two spectral imaging techniques are suitable for the non-destructive prediction of fruit quality. Among them, the FSI technology illustrates better prediction, providing technical support for the non-destructive detection of intrinsic fruit quality

    ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family

    Get PDF
    IntroductionInsect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy.MethodsTo address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters.ResultsExperimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%.DiscussionOur model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Study on the Vibration Suppression Method of Urban Railway Vehicles Based on a Composite Dynamic Vibration Absorber

    No full text
    To reduce the bounce and the pitch vibration of carbody, a vertical dynamic model for urban rail vehicles is established to analyze the vibration response of the carbody in the low frequency range. In this paper, different methods of single-degree-of-freedom dynamic vibration absorber to suppress the vibration for carbody are investigated. The limits of single-degree-of-freedom dynamic vibration absorber to the vibration reduction effect of carbody are pointed out. After that, the design of a composite dynamic vibration absorber including a double oscillator structure is introduced. A vibration discreteness index is used to evaluate dynamic vibration absorbers with various designs for the vibration damping performance. Finally, the vibration reduction performance of the composite dynamic vibration absorber is verified by Sperling’s riding index. The results demonstrate that the performance of the single degree of freedom dynamic vibration absorber attached to a carbody may increase the vibration within a partial scope, when the peak frequency of vibration is far away from the design frequency. The installation of the composite dynamic vibration absorber vibration provides gentler running experience for passengers

    Study on the Urban Rail Transit Sleeper Spacing Considering Vehicle System

    No full text
    To design the optimal sleeper spacing of the track and reduce the vertical vibration of the rail, the influence of the sleeper spacing on the rail vibration is analysed in the vehicle-track vertical coupling model. By comparing the effects of vehicle speed and load on the vibration response of rails under different sleeper spacings, the importance of vehicle system is pointed out. According to the power spectrum density of the vertical rail displacement, the optimal sleeper spacing under the specific line is proposed, and verified via the vibration decay rate. The results show that the sleeper spacing directly affects the first-order Pinned-pinned vibration of the rail, and the effects of the speed and the load on the vibration response are different. In the low-speed section, the impact of the sleeper spacing on the vibration response is smaller, and the larger spacing can be appropriately selected to reduce the number of sleeper to save costs. However, in the high-speed section, the impact is larger, and the speed and the load should be comprehensively considered to select the optimal sleeper spacing

    Study on Vibration Suppression of Track System via Double Rail Vibration Absorber

    No full text
    • …
    corecore