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Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China, 4School of Electical
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The soluble solid content (SSC) is one of the important parameters depicting the

quality, maturity and taste of fruits. This study explored hyperspectral imaging (HSI)

and fluorescence spectral imaging (FSI) techniques, as well as suitable

chemometric techniques to predict the SSC in kiwifruit. 90 kiwifruit samples

were divided into 70 calibration sets and 20 prediction sets. The hyperspectral

images of samples in the spectral range of 387 nm~1034 nm and the fluorescence

spectral images in the spectral range of 400 nm~1000 nm were collected, and

their regions of interest were extracted. Six spectral pre-processing techniques

were used to pre-process the two spectral data, and the best pre-processing

method was selected after comparing it with the predicted results. Then, five

primary and three secondary feature extraction algorithms were used to extract

feature variables from the pre-processed spectral data. Subsequently, three

regression prediction models, i.e., the extreme learning machines (ELM), the

partial least squares regression (PLSR) and the particle swarm optimization -

least square support vector machine (PSO-LSSVM), were established. The

prediction results were analyzed and compared further. MASS-Boss-ELM, based

on fluorescence spectral imaging technique, exhibited the best prediction

performance for the kiwifruit SSC, with the R2
p, R

2
c and RPD of 0.8894, 0.9429

and 2.88, respectively. MASS-Boss-PLSR based on the hyperspectral imaging

technique showed a slightly lower prediction performance, with the R2
p, R

2
c, and

RPD of 0.8717, 0.8747, and 2.89, respectively. The outcome presents that the two

spectral imaging techniques are suitable for the non-destructive prediction of fruit

quality. Among them, the FSI technology illustrates better prediction, providing

technical support for the non-destructive detection of intrinsic fruit quality.
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1 Introduction

People love kiwifruit for its sweet and sour taste and rich

nutritional value. Sugar is important in judging kiwifruit’s quality,

affecting its taste. About 81% of kiwifruit’s solid soluble content (SSC)

is sugar, so SSC is usually used to evaluate its sugar content. The

traditional SSC detection methods use refractometer and other

instruments, which are cumbersome to operate and also destroy the

physical integrity of the detected object, and cannot achieve rapid

detection. Therefore, realizing the non-destructive detection of

kiwifruit SSC is of great practical importance.

Hyperspectral imaging (HSI) and fluorescence spectral imaging

(FSI) technologies combine image and spectral information, which

can quickly detect the quality parameters of the measured object

without damage. In recent years, HSI technology has developed

rapidly in the non-destructive detection of the intrinsic parameters

of fruits, such as SSC, pH, hardness, etc. Pham et al. (Pham and Liou,

2022) used HSI to achieve online detection of jujube surface defects.

They used principal component analysis (PCA) to extract feature

variables from hyperspectral data in a spectral range of 468~950 nm

to establish ANN and SVM models, illustrating accuracy rates of 95%

and 94.6%, respectively. Li et al. (Li et al., 2022) used short-wave

infrared HSI technology to predict the SSC in dried Hami jujube and

established the FS-CNN model, where R2
p and RPD were 0.857 and

2.648, respectively. Gao et al. (Gao and Xu, 2022) predicted the SSC of

red globe grape by combining HSI imaging technology with the PLSR

model. They obtained the correlation coefficients of the calibration

and prediction sets of 0.9775 and 0.9762, respectively.

FSI technology utilizes the fluorescence of different intensities

emitted by excited molecules or atoms when certain substances are

excited after being irradiated by light of specific wavelengths. Compared

with HSI technology, FSI technology was applied later but achieved good

progress in recent years. For example, Kim et al. (Kim et al., 2022) used

FSI technology to detect aflatoxin in corn under 365 nm ultraviolet

excitation rapidly, and the detection accuracy of the quadratic support

vector machine (QSVM) reached 95.7%. Zhou et al. (Zhou et al., 2022)

used FSI technology to detect the heavymetal lead in lettuce leaves, where

a fluorescent filter of 475 nm was used to collect the fluorescence

spectrum image in the spectral range of 480.46 nm~1001.61 nm, and

R2
c , R

2
pand RPD of the best prediction method (i.e., WT-MS-SAE-SVR)

were 0.9802, 0.9467, and 3.273, respectively. Kang et al. (Kang et al., 2022)

used FSI technology to detect the dry matter content of mango, and R2
c ,

R2
p, RMSEC and RMSEP of the best prediction method (i.e., CARS-RF-

SPA-BPNN) were 0.9710, 0.9658, 0.1418 and 0.1526, respectively.

Although FSI technology has been widely used to detect

agricultural products, most current studies are extended to detect

mold, and less is applied to detect the intrinsic quality of agricultural

products. In this study, the feasibility of FSI technology to predict

kiwifruit SSC was examined, and the outcome was compared with

HSI technology, where the feature extraction method was designed to

establish a prediction model and the effects of two different imaging

technologies on the performance of the prediction model were

analyzed from the experimental results. Also, various regression

prediction models were compared, and the performance differences

between the two detection techniques led to the best method for

detecting kiwifruit SSC.
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2 Materials and methods

2.1 Materials

90 samples of “Hongyang” kiwifruit with intact skin were selected

from a kiwifruit base in Ya’an City, Sichuan Province. After the sample’s

surface was cleaned with water, they were sequentially numbered and

left at room temperature (25 ± 1 °C) for 24 h, and their hyperspectral

and fluorescence spectral images were collected. After collecting the two

spectral images of the samples, their SSC physicochemical values were

determined immediately. According to the SSCmeasurement method of

“NY/T 2637-2014”, the samples were washed and peeled around their

equators, then the pulp was removed, and the juice was pressed. The

fruit juice was introduced into the detection tank of the handheld

glucose salinity refractor (i.e., YSK-107) with a resolution of 0.1% Brix,

and the data were recorded as the SSC physicochemical values after the

display data were stable. In order to reduce the operation error, each

sample was measured twice, and the average value was taken as the SSC

physicochemical value of the sample, with the unit of “Brix”.
2.2 Acquisition equipment

Hyperspectral images of the kiwifruit samples were collected by Gaia

sorter “Gaia” hyperspectral sorter in a spectral range of 387~1034 nm.

The sorter mainly includes two groups of 4 LSTS-200 bromine tungsten

lamps with a uniform light source, Image-L “spectral image” series CCD

camera, an electronically controlled mobile platform and a computer

with hyperspectral data acquisition software (SpaceView) powered by

AC220V. The pixel and pixel size of the spectral camera are 1344 × 1024

and 6.45 × 6.45 mm, respectively. The overall structure of the Gaia sorter

is shown in Figure 1A.

The GaiaFluo series fluorescence spectral detection system was

utilized to collect the fluorescence images of kiwifruit samples. In the

system, the camera is Gaiafluo-VN-HR, the spectrometer is a

transmission grating (PGP) structure, the spectral range and

resolution are 400-1000 nm and 2.8 nm, respectively, and the detector

is the SCMOS with a pixel size of 6.5 mm. The system also includes an 80

× 80 × 100 cm Obscura and a 30 × 30 × 40 cm platform. In addition, it

contains four 50 W reflective light sources, a 150 W xenon lamp light

source, various excitation filters, fluorescent filters, and a computer

equipped with spectrum acquisition software (spaceview). The overall

structure of the fluorescence spectral detection system is shown

in Figure 1B.
2.3 Spectral image acquisition

The HSI system was first warmed up for more than 30 min before

the hyperspectral images of the samples were acquired and corrected

in black and white after stabilizing the voltage. During acquisition, the

sample platform was 170 mm away from the lens, the exposure time

of the spectroscopic camera was 13.5 ms, the advancing distance of

the electronically controlled platform was 110 mm, and the advancing

and retracting speeds were 4.6 mm/s and 50 mm/s, respectively.

Similarly, the FSI system was prewarmed for about 30 min, and
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suitable excitation and fluorescence filters were selected after

stabilizing the voltage. A xenon lamp was selected as the excitation

light source.

After the combination of different filters was tested, the excitation

filter with a central wavelength of 390 nm and a bandwidth of 40 nm

and the fluorescence filter with a central wavelength of 495 nm were

finally selected. The system parameters were set as follows: the camera

moving speed was 0.13 mm/s, the exposure time was 800 ms, and the

distance between the spectral camera lens and the measured object

was about 70 cm.

The HSI and FSI spectral images of the samples and their region

of interest (ROI) are shown in Figures 2A–D, respectively. During the

acquisition process of hyperspectral images, SpecView software was

employed to perform black-and-white calibration on the

hyperspectral images to reduce the interference of environmental

factors, and ENVI 5.3 software was utilized to extract the ROI. The

average spectrum in the ROI was taken as the raw spectral value of

the samples.
2.4 Methods

2.4.1 Spectral pre-processing methods
Collecting spectral image data is easily affected by the differences

between samples, environmental noise, and baseline drift during

detection. In order to reduce these interferences, selecting

appropriate pre-processing methods for the raw spectral images is
Frontiers in Plant Science 03
necessary. Among the common pre-processing methods, the standard

normal variant transform (SNV) (Dong et al., 2022, Liu et al., 2022)

eliminates the error caused by different scattering levels between

samples. The detrend correction (DT) (Ai et al., 2022) reduces the

influence of external noise on the spectral curve by subtracting the

trend-fitting line of the noise. The Savitzky-Golay (SG) convolution

smoothing (Ren et al., 2021) reduces the noise by smoothing the

spectral data within the window. The Gaussian window smoothing

(GWS), boxing smoothing (BS) and exponential smoothing (ES)

methods can reduce the noise in different smoothing ways.

2.4.2 Feature extraction methods
The pre-processed spectral data exhibited a multicollinearity

problem, so it was necessary to find the feature variables beneficial

to the prediction results and eliminate the invalid variables. In this

study, the Bootstrapping soft shrinkage (Boss) algorithm (Deng et al.,

2016; Ouyang et al., 2021), the competitive adaptive reweighted

sampling (CARS) algorithm (Zhang et al., 2019; Shicheng et al.,

2021), the iteratively variable subset optimization (IVSO) algorithm

(Sun et al., 2021), the Interval Variable Iterative Space Shrinkage

Approach (IVISSA) (Cheng et al., 2020; Hao et al., 2022) and the

Model adaptive space shrinkage (MASS) (Wen et al., 2016) methods

were used to extract the spectral data.

2.4.3 The modeling methods
Extreme learning machines (ELM) is a single-hidden layer

feedforward neural network with fast training speed and strong
A B DC

FIGURE 2

Spectral image of a sample: (A) raw hyperspectral image; (B) raw fluorescence spectral image; (C) ROI of the raw hyperspectral image; (D) ROI of the
raw fluorescence spectral image.
FIGURE 1

The overall equipment structure: (A) Gaia hyperspectral sorter; (B) Gaia fluorescence spectral detection system.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1075929
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1075929
generalization ability. It is widely used in various classification and

regression scenarios (Jiang et al., 2018; Cheng et al., 2022). The partial

least squares regression (PLSR) model combines principal

components analysis (PCA) with maximum correlation analysis to

fit the distribution of random variables into linear equations. It is

widely used in mathematics, statistics, and finance (Guo et al., 2021;

Ma et al., 2021). Least square support vector machine (LSSVM)

replaces the complex secondary optimization problem in the

traditional SVM by solving primary linear equations, simplifying

the model and improving its operation speed (Feng et al., 2018; Zhang

et al., 2020).

2.4.4 The evaluation indicators
Five indicators, namely the coefficient of determination of the

calibration set (R2
c ), the root mean square error of the calibration set

(RMSEC), the coefficient of determination of the prediction set (R2
p),

the root mean square error of the prediction set (RMSEP), and the

residual prediction deviation (RPD) were selected to evaluate the

prediction capabilities of the developed models (Sharma et al., 2022).

These evaluation indexes were calculated using the following Eqs. (1)-

(3).

R2  =  1 −o
n
i=1(yi � fi)

2

on
i=1(yi ��y)2

∈ ½0,  1� (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i¼1 f i-yið Þ2
n

s
(2)

RPD ¼ Stdp
RMSEP

(3)

where R2 represents the correlation between the predicted and

actual values, and the closer R2 is to 1, the better the predictive

stability and the fit of the model. RMSE represents the difference

between the predicted and actual values, and a smaller RMSE

indicates better model prediction performance. RPD is the ratio of

the sample’s standard deviation, and its root means square error

(Saeys et al., 2005). RPD< 1.4 indicates a poor model prediction, 1.4 ≤

RPD ≤ 2 indicates an average model prediction and RPD ≥ 2 indicates

a good model prediction.
2.4.5 The optimization method
The particle swarm optimization (PSO) algorithm was originally

proposed by Eberhart and Kennedy in 1995 and used commonly to

solve optimization problems (Bhandari et al., 2015; Bonah et al.,

2020). Its principle indicates that the position of each particle

corresponds to the optimal vector of the problem to be solved, and

a population X of m particles in a D-dimensional space is set. The

position Xi and the moving speed Vi of the ith particle in the

population corresponds to (Xi1,Xi2,Xi3,…XiD) and (Vi1,Vi2,Vi3,…

ViD) , respectively, and Pibest is (Pi1,Pi2,Pi3,…PiD) , representing the

optimal position sought by the individual particles. At this time, the

global optimal position of the whole population is Gbest, which is (Pg1,

Pg2,Pg3,…PgD) . Each particle continuously updates Pbest and Gbest

through a given fitness function until the optimal solution is found or

the number of iterations is reached. The velocity and position of the
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dth-dimension of the ith particle are updated as follows (Eqs (4) and

(5)).

Vk+1
id ¼ wVk

id+c1r1 Pk
id-X

k
id

� �
+c2r2 Pk

gd-X
k
id

� �
(4)

Xk+1
id ¼ Xk

id+X
k+1
id (5)

where c1 and c2 are learning factors which adjust the maximum step

size of learning, r1 and r2 are random numbers in the range of 0~1,

and w is the inertia weight that adjusts the searchability of the solution

space. This study used the PSO algorithm to optimize the LSSVM

model parameters.
3 Results and discussion

3.1 Original spectral data

The raw spectral curves of the 90 kiwifruit samples are shown in

Figure 3. Figure 3A is the original hyperspectral data in a wavelength

range of 387.15 nm~1034.99 nm with 256 spectral bands. Figure 3B is

the original fluorescence spectral data in a wavelength range of 376.80

nm~1011.05 nm with 125 spectral bands.

It can be seen from Figure 3A that the bands at the beginning and

the end of the original hyperspectral image data are significantly

affected by noise. The spectral range of 420 nm~1000 nm was selected

as the useful wavelength for the original hyperspectral image, with a

total of 229 spectral bands. From Figure 3A, the troughs at 450 nm

and 670 nm could be due to chlorophyll and other pigments in the cell

wall. In comparison, the trough absorption peak at 980 nm is

attributed to the tertiary and secondary frequencies of the C-H and

O-H bonds in kiwifruit SSC (Chu, 2016). The first and last bands of

the original fluorescence spectral images were also affected by noise,

so the spectral range of 400~900 nm was selected as the effective

wavelength of the original fluorescence spectral images, with a total of

102 spectral bands. From Figure 3B, after using the excitation filters

with a central wavelength of 390 nm and 495 nm, obvious peaks

appear near 510 nm, 690 nm, and 740 nm.
3.2 Sample division

Dividing samples are beneficial to the stability and accuracy of the

model prediction. Kennard Stone (KS) (Wei et al., 2020; Huang et al.,

2021) algorithm was applied to divide 90 samples into a training set of

60 samples and a prediction set of 30 samples in a ratio of 2:1. The

SSC values were collected by a handheld YSK-107 Brix salinity

refractometer. The statistical results of the training and prediction

sets of HSI and FSI are listed in Table 1.

From Table 1, the ranges of each statistical parameter for the SSC

values of the training set and prediction set samples corresponding to

the HSI data are 6.50~14.9 and 8.70~15.35, respectively, and the

standard deviations of the two samples are 1.79 and 1.44, respectively.

Although the data range of the prediction set exceeds the training set,

only occasional individual data at the front and back ends of the data

exist. By comparing the standard deviations, the data of the prediction

set are more concentrated, conforming to the principle of
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independent and identical distribution, indicating that the

distribution of the two is relatively consistent. The statistical

parameters of the SSC values of the training set and the prediction

set corresponding to the FSI data ranged from 6.50 to 15.35 and 8.70

to 14.90, respectively. The above results illustrate that the sample

division is reasonable and representative.
3.3 Spectral pre-processing

The raw effective spectral image data were pre-processed by the

above six methods, and the prediction results of each pre-processing

method were compared through the PLSR model, from which the

optimal pre-processing method was selected. The prediction results of

PLSR are listed in Table 2. The number of latent variables (lvs) in

Table 2 was determined by the cross-sectional analysis. 1 to n

potential variables were used to establish the model and the

number of lvs with the best prediction was selected.

During pre-processing of the hyperspectral data, the RPD values

of SG, GWS, BS and ES were above 2.1 (Table 2), among which BS-

PLSR exhibited the best prediction performance. The R2
cof BS-PLSR is

0.8416, which is not the optimal value, but its R2
pand RPD are 0.7629

and 2.21, respectively, the best values observed among all the

methods. Hence BS was selected as the pre-processing method for

raw hyperspectral image data. During pre-processing of the

fluorescence spectral data, the RPD values of SG, BS, and ES were

higher than the original fluorescence spectral data, with a value of
Frontiers in Plant Science 05
1.41. Among them, SG-PLSR showed the best prediction

performance, and its R2
c  , R

2
p , and RPDwere 0.9021, 0.6396, and

1.67, respectively. SG was selected as the pre-processing method for

raw fluorescence spectral image data.
3.4 Extraction of spectral feature variable

3.4.1 Extraction based on boss feature variables
Boss used WBS technology to establish a sub-model to extract

feature variables randomly from the pre-processed spectral data; thus,

there was certain randomness. In the experiment, Boss was repeated

several times to reduce the influence of randomness. During the

extraction of hyperspectral data, the number of latent variables was

set to 17 through cross-validation, the cross-folding was 5 layers, and

the number of sampling was 1000. Meanwhile, 19 feature variables

were extracted, accounting for 8.3% of the total hyperspectral

variables. Similarly, the same extraction process was performed for

the fluorescence spectrum data. The number of latent variables was

set to 20, other parameters were the same as above, and 31

characteristic variables were finally extracted, accounting for 30.4%

of the total fluorescence spectral variables. The distribution of the

feature variables extracted by Boss is shown in Figure 4.

As shown in Figure 4, the number and distribution of feature

variables extracted by the Boss for the two spectral data differ. For

hyperspectral data, the distribution of feature variables was mainly

concentrated in the intervals of 500~650 nm and 800~1000 nm. In
TABLE 1 Statistical results of training and prediction data sets of SSC (unit:/Brix).

Sample set Number of samples Minimum
value

Maximum
value

Average
value

Standard
deviation

Hyperspectral sample set division
Training set 60 6.50 14.90 10.97 1.79

Prediction set 30 8.70 15.35 11.41 1.44

Fluorescence spectral sample set
division

Training set 60 6.50 15.35 11.04 1.79

Prediction set 30 8.70 14.90 11.27 1.46
f

A B

FIGURE 3

Spectral data of kiwifruit acquired by using (A) hyperspectral imaging and (B) fluorescence imaging.
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contrast, the feature variables were mainly concentrated in the wave

peaks and troughs for the fluorescence spectral data.

3.4.2 Extraction of feature variables based on CARS
CARS was used to extract the feature variables from the pre-

processed spectral data. The same parameters were set for both

spectral data: a maximum principal component of 18, the cross-

validation of 5 times, and the Monte Carlo sampling 100 times. The

extraction process of two feature variables from the spectral data by

CARS is shown in Figures 5, 6, respectively.

As shown in Figures 5A, B, the number of retained feature variables

showed a fast and then slow continuous decreasing trend with the

increase of sampling times, while the RMSECV value showed a
Frontiers in Plant Science 06
decreasing and then an increasing trend. This could be due to the

elimination of many redundant variables at the initial extraction stage.

However, the excessive deletion of variables at the later extraction stage

led to a decline in the model’s prediction performance.

The curve in Figure 5C represents changes in the regression

coefficient of each feature variable with the increase of the sampling

times. The blue “*” indicates the Monte Carlo sampling times when

RMSECV had a minimum value. The model prediction performance

was optimal at this time, and the corresponding number of samples

was 40. Also, the trend of Figure 6 is similar to Figure 5, and the

corresponding number of samples was 36 when RMSECV had the

minimum value. Finally, the numbers of feature variables of

hyperspectral data and fluorescence spectral data extracted by

CARS were 35 and 25, respectively, accounting for 15.3% and

24.5% of the total original spectral variables. The distribution of

feature variables extracted by CARS is shown in Figure 7.

As shown in Figure 7, the hyperspectral feature variables

extracted by CARS were mainly concentrated in two spectral ranges

of 430~610 nm and 800~1000 nm. In comparison, the fluorescence

spectral feature variables extracted by CARS were mainly

concentrated in three spectral ranges of 400~500 nm, 600~680 nm,

and 770~900 nm.

3.4.3 Extraction of feature variables based on IVSO
IVSO was used to extract feature variables from the pre-processed

spectral data. During the extraction process of hyperspectral data and

fluorescence spectral data, the maximum numbers of PC cross-

validation were set to 14 and 16, the cross-validation numbers were

set to 9 and 7, and the running number of WBMS was set to 1000.

In the extraction process of hyperspectral data, IVSO was iterated

9 times. At this time, RMSECV reached a minimum value of 0.807,

and 44 feature variables were extracted at the third iteration. In the

fluorescence spectral data extraction process, RMSECV reached a
FIGURE 4

Distribution of the feature variables extracted by Boss.
TABLE 2 The prediction results of PLSR based on different pre-processing methods.

Methods lvs R2c RMSEC R2p RMSEP RPD

Hyperspectral

H-Raw data 10 0.8095 0.7739 0.6795 0.7994 1.85

SNV 14 0.9489 0.3610 0.4710 1.2047 1.10

DT 14 0.9315 0.4269 0.6719 1.0052 1.19

SG 12 0.8207 0.7507 0.7439 0.7146 2.10

GWS 13 0.8520 0.6820 0.7334 0.7291 2.10

BS 13 0.8416 0.7055 0.7629 0.6876 2.21

ES 13 0.8481 0.6909 0.7490 0.7075 2.14

Fluorescence
Spectral

F-Raw data 15 0.8689 0.6436 0.6143 0.8894 1.41

SNV 12 0.7454 0.8894 0.4248 1.1170 1.03

DT 12 0.7829 0.8367 0.4350 1.0423 0.99

SG 16 0.9021 0.5562 0.6396 0.8598 1.67

GWS 19 0.8764 0.6188 0.5977 0.9401 1.45

BS 17 0.8889 0.5926 0.6030 0.9023 1.60

ES 19 0.8618 0.6607 0.6267 0.8750 1.53

The bold values represent the best performer in each table.
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minimum value of 0.940, and 23 feature variables were extracted. The

distribution of feature variables extracted by IVSO is shown in

Figure 8, where the hyperspectral feature variables are mainly

distributed around 520 nm and 820 nm. In contrast, the

distribution of the fluorescence spectral characteristic variables is

relatively uniform.

3.4.4 Extraction of feature variables based on
IVISSA

IVISSA was used to extract feature variables from the pre-

processed spectral data. During the extraction processes of

hyperspectral and fluorescence spectral data, the maximum number

of latent variables was set to 19 and 17, respectively. Through cross-

validation optimization, the number of cross-validation was 10, and

the number of binary matrix sampling was 1000. In the extraction
Frontiers in Plant Science 07
process of hyperspectral data, IVISSA iterated a total of 29 times, and

RMSECV reached a minimum value of 0.7559. At this time, 70 feature

variables were extracted, accounting for 30.6% of the total spectral

variables. In the fluorescence spectral data extraction process, IVISSA

iterated 19 times, and RMSECV reached a minimum value of 0.6923.

41 feature variables were extracted at that time, accounting for 40.2%

of the total spectral variables. The distribution of feature variables

extracted by IVISSA is shown in Figure 9.

As shown in Figure 9, the numbers of two spectral feature

variables extracted by the IVSO algorithm are relatively large, and

the number of hyperspectral feature variables is much higher than the

fluorescence spectral feature variables. Among them, the fluorescence

spectral feature variables are distributed uniformly in the whole

spectral range, while the hyperspectral feature variables are densely

distributed at 450 nm, 540 nm, 620 nm, 810 nm, and 950 nm.
A

B

C

FIGURE 6

Extraction process of fluorescence spectral feature variables by CARS: (A) The number of feature variables reserved; (B) RMSECV; (C) The change of
regression coefficient of each characteristic variable.
A

B

C

FIGURE 5

Extraction process of hyperspectral feature variables by CARS: (A) The number of feature variables reserved; (B) RMSECV; (C) The change of regression
coefficient of each characteristic variable.
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3.4.5 Extraction of feature variables based on
MASS

MASS was used to extract feature variables from the pre-

processed spectral data. During the extraction processes of

hyperspectral and fluorescence spectral data, the maximum number

of latent variables was set to 13 and 14, respectively. Through cross-

validation optimization, the number of cross-validation was 5, and

the number of binary matrix sampling was 1000. In the extraction

process of hyperspectral data, MASS iterated 36 times, and 53 feature

variables were extracted, accounting for 23.1% of the total

hyperspectral variables. In the extraction process of fluorescence

spectral data, MASS iterated 22 times, and 29 feature variables were

extracted, accounting for 28.4% of the total fluorescence spectral

variables. The distribution of feature variables extracted by MASS is

shown in Figure 10.

From Figure 10, the number of feature variables extracted by

MASS for the two types of spectral data are 23.10% and 28.4%,

respectively. The extracted fluorescence spectral feature variables are

distributed uniformly in the whole range, while the hyperspectral
Frontiers in Plant Science 08
feature variables are concentrated in the former and latter two

spectral ranges.

3.4.6 Secondary extraction of the feature variables
The first feature extraction could reduce some redundant and

collinear variables in the original feature variables. However, the

proportion of first-extracted feature variables is still high, with a few

redundant variables. In order to further improve the prediction

performance of the model, secondary feature extraction was

adopted. Boss could greatly minimize the number of feature

variables compared to the other four algorithms. Therefore,

combining CARS, MASS, and IVISSA with the Boss algorithm for

secondary feature extraction could combine the advantages of

different feature extraction algorithms and further reduce the

number of feature variables. The number of feature variables after

the secondary extraction is listed in Table 3.

The specific feature variables obtained by the above three

secondary feature extraction methods are listed in Table 4.
FIGURE 9

Distribution of feature variables extracted by IVISSA.
FIGURE 10

Spectral feature variable distribution map based on MASS.
FIGURE 7

Distribution of the feature variables extracted by CARS.
FIGURE 8

Distribution of the feature variables extracted by IVSO.
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3.4.7 Results of feature variable extraction
The numbers of feature variables obtained by the above eight

feature extraction methods are shown in Figure 11.

From Figure 11, for hyperspectral data, the number of extracted

feature variables ranged from 17 to 70. Among them, the number of

feature variables extracted by IVISSA-Boss is the least, and the

number of feature variables extracted by IVISSA is the largest. For

the fluorescence spectral data, the number of the extracted feature

variables ranged from 20 to 41. Among them, the number of feature

variables extracted by IVISSA-Boss is the least, and the number of

feature variables extracted by IVISSA is the largest. In addition, the

number of feature variables after secondary feature extraction

decreased, indicating that secondary feature extraction could further

remove the redundant variables.
3.5 Performance analysis of predictive
models

The extreme learning machine (ELM), the partial least squares

regression (PLSR), and the least squares support vector machine

optimized by the particle swarm optimization (PSO-LSSVM)

prediction models were established for the above-indicated 8 types

of feature variables extracted. The differences in the prediction

performance of the two spectral image data for the SSC value of

kiwifruit were analyzed and compared.

3.5.1 ELM
The “sig” function was selected as the activation function, and the

number of neurons in the hidden layer was set from 1 to 100. The

prediction results of ELM based on hyperspectral and fluorescence

spectral feature variables are listed in Tables 5, 6, respectively.

As shown in Table 5, the RPD value of ELM established by 8 types

of hyperspectral feature variables ranged from 1.90 to 2.83, and its R2
p
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and R2
c were higher than 0.86, presenting that the overall prediction

effect of ELM is stable. IVISSA-ELM exhibited the worst prediction

effect due to more redundant variables in its retained feature variables.

The prediction effect of ELM after secondary feature extraction was

improved, among which MASS-Boss-ELM showed the best

prediction effect with R2
p, R2

c and RPD of 0.8671, 0.9000, and

2.83, respectively.

Table 6 illustrates that the RPD value of ELM established by 8

types of fluorescence spectral feature variables ranged from 2.24 to

2.88. Among them, the prediction performance of Boss-ELM is

slightly worse, and its RPD is only 2.24. Compared with CARS-

ELM, the RPD of CARS-Boss-ELM decreased slightly, and it was

estimated that some effective feature variables were excluded in the

secondary feature extraction process. The prediction performance of

MASS-Boss-ELM was relatively optimal, with R2
p, R

2
c , RPD of 0.8894,

0.9429, and 2.88, respectively.

From Tables 5, 6, the ranges of R2
pand R2

c of the ELM established

by 8 types of hyperspectral feature variables were 0.8064~0.8750 and

0.8641~0.9443, respectively. For the feature variables of fluorescence

spectra, the ranges of R2
p and R2

c corresponding to ELM were

0.8329~0.8894 and 0.8805~0.9429, respectively. Therefore, the

overall prediction performance of ELM based on fluorescence

spectral data is superior. MASS-Boss-ELM was optimal for both

hyperspectral and fluorescence spectral data, verifying that the

method reveals the strongest generalization ability.

3.5.2 PLSR
The cross-validation method was used to determine the number

of PLSR latent variables, and the optimal latent variables were selected

as the final. The prediction results of PLSR based on hyperspectral

and fluorescence spectral feature variables are listed in

Tables 7, 8, respectively.

From Table 7, the PLSR established by 8 types of hyperspectral

feature variables performed well in the prediction performance of
TABLE 3 The results of secondary feature extraction.

Secondary feature extraction

Hyperspectral Fluorescence
Spectral

Number of
feature variables Percentage of total bands Number of

feature variables Percentage of total bands

CARS-Boss 27 12.1 21 20.2

MASS-Boss 21 9.4 21 20.2

IVISSA-Boss 17 7.59 20 19.6
TABLE 4 Spectral variables obtained by different secondary feature extraction methods.

Feature extraction method Hyperspectral feature variables Fluorescence spectral feature variables

MASS-Boss
10,44,45,46,52,53,54,81,88,97,154,155,165,

166,192,201,207,213,217,218,227
3,5,10,14,16,17,22,23,27,29,30,34,42,51,59,60,66,70,75,78,85

CARS-Boss
1,2,11,19,45,52,67,82,139,143,148,153,155,
165,166,172,173,179,185,194,201,207,212,

217,218,219,227

3,5,6,10,16,17,22,23,27,29,46,
47,51,53,54,55,73,76,79,84,99

IVISSA-Boss
1,2,45,52,89,97,147,155,165,166,201,

207,209,212,213,217,227
3,6,10,16,22,23,27,29,33,34,47,50,51,65,66,70,76,78,84,99
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kiwifruit SSC, and the RPD values exceeded 2.0; the highest RPD

value reached 2.89. Compared with PLSR based on first feature

extraction, the prediction performance of PLSR after secondary

feature extraction was generally improved, indicating that

secondary feature extraction could effectively filter out redundant

variables. Among them, the prediction results of MASS-Boss-PLSR

are relatively the best, with R2
p, R

2
c and RPD of 0.8717, 0.8747 and

2.89, respectively.

As shown in Table 8, while comparing with the PLSR after only

SG pre-processing, the prediction performance of PLSR displays

improvements in the range of 1.85 to 2.36 after both the first and

secondary feature variable extraction, both of which are higher than

1.67 of the SG-PLSR without feature extraction (Table 2). Among

them, the prediction result of MASS-Boss-PLSR is the worst as the

secondary feature extraction algorithm eliminates part of the key

feature variables. The prediction performance of CARS-PLSR is

relatively optimal, with R2
p, R

2
c , and RPD of 0.8159, 0.8588, and

2.36, respectively.

By comparing Table 7, 8, the ranges of R2
p and R2

c of PLSR based

on hyperspectral data are 0.7964~0.8784 and 0.8505~0.9179,

respectively. The ranges of R2
p and R2

c of PLSR based on

fluorescence data are 0.7467~0.8159 and 0.8017~0.9522,

respectively. By combining Tables 4, 7, there is variability in the
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performance of the prediction models based on hyperspectral and

fluorescence spectral data, in which MASS-Boss-ELM based on

fluorescence spectral data is the optimal prediction method, and its

R2
p R

2
c , and RPD are 0.8894, 0.9429 and 2.88, respectively.

3.5.3 PSO-LSSVM prediction model
The radial basis function (RBF) was selected as the kernel

function of LSSVM, and the prediction performance of the model

was easily affected by the regularization parameter g and the kernel

parameter s2 of RBF. The two parameters were optimized by the

particle swarm optimization (PSO) algorithm (Bhandari et al., 2015;

Bonah et al., 2020). In the training process, the population number,

the iteration number, and the initial value of the inertia factor were set

to 20,100, and 0.90, respectively, and both the learning factors c1 and

c2 were 2. PSO-LSSVM was tested, and its prediction results are listed

in Tables 9, 10, respectively.

As exhibited in Table 9, the prediction effect of PSO-LSSVM

based on 8 types of hyperspectral feature variables performed well,

and the RPD and  R2
c are generally higher than 2.0 and 0.8,

respectively, and R2
p ranged from 0.74 to 0.85, indicating that PSO-

LSSVM presents good prediction performance for the SSC of

kiwifruit. Among them, MASS-Boss-PSO-LSSVM illustrates the

relatively best prediction results, with R2
p, R

2
c , and RPD of 0.8169,

0.8265, and 2.28, respectively.

The prediction effect of PSO-LSSVM based on fluorescence

spectral feature variables is significantly different, and the RPD

values ranged from 1.47 to 2.29 (Table 10). Among them, IVISSA-

PSO-LSSVM exhibits the relatively best prediction results, with the R2
p

, R2
c , and RPD of 0.7473, 0.9582 and 2.29, respectively. The prediction

performance of PSO-LSSVM is reduced after IVISSA-Boss secondary

extraction, indicating that the valid variables among them were over-

screened. In addition, the R2
c and R2

p of all methods differed

significantly, specifying that the stability of PSO-LSSVM needs

further improvements.

Among these, the best optimization parameters of PSO in the

superior predicted models for the two spectra data are listed

in Table 11.

3.5.4 Analysis and comparison of prediction results
The methods with relatively superior prediction results based on

hyperspectral data and fluorescence spectral data were hyperspectral-

BS-MASS-Boss-ELM, fluorescence spectral-SG-MASS-Boss-ELM,
FIGURE 11

The number of variables extracted by different feature extraction
methods.
TABLE 5 Prediction results of ELM based on hyperspectral data.

Feature extraction method Number of feature variables Number of hidden neurons R2c RMSEC R2p RMSEP RPD

Boss 19 24 0.8641 0.5973 0.8372 0.7152 2.48

CARS 35 38 0.9244 0.4747 0.8641 0.5730 2.42

IVSO 44 37 0.9103 0.4507 0.8250 0.8223 2.28

IVISSA 70 36 0.9153 0.4633 0.8064 0.8040 1.90

MASS 53 46 0.9443 0.3795 0.8677 0.6500 2.60

CARS-Boss 27 39 0.9214 0.4188 0.8750 0.6856 2.51

MASS-Boss 21 38 0.9000 0.5433 0.8671 0.5761 2.83

IVISSA-Boss 17 35 0.9186 0.4626 0.8602 0.6631 2.72

The bold values represent the best performer in each table.
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hyperspectral-BS-MASS-Boss-PLSR and fluorescence spectral-SG-

CARS-PLSR, hyperspectral-BS-MASS-Boss-PSO-LSSVM, and

fluorescence spectral-SG-IVISSA-PSO-LSSVM, respectively. The

prediction results of the above six methods are shown in Figure 12

and are listed in Table 12.

Figure 12 shows the regression chart of the prediction results for

the above six methods. Comparing the prediction results with the

other five methods, the prediction results of IVISSA-PSO-LSSVM

based on fluorescence spectral data are quite different, and the

prediction results are the worst. This is due to the excessive PSO
Frontiers in Plant Science 11
algorithm parameters and the small number of samples, leading to an

overfitting tendency in the training set. Compared with MASS-Boss-

PLSR based on hyperspectral data, MASS-Boss-ELM and IVSO-PSO-

LSSVM based on hyperspectral data exhibited relatively poor

prediction results on the test set. Among them, the predicted results

of MASS-Boss-ELM based on fluorescence spectral data illustrated

the best generalization ability.

Table 12 presents that among the prediction results based on

hyperspectral data, both MASS-Boss-ELM and MASS-Boss-PLSR

show superior prediction performance, indicating that the MASS-
frontiersin.org
TABLE 6 Prediction results of ELM based on fluorescence spectral data.

Feature extraction method Number of feature variables Number of hidden neurons R2c RMSEC R2p RMSEP RPD

Boss 31 42 0.8805 0.6347 0.8329 0.5434 2.24

CARS 25 50 0.9034 0.5181 0.8784 0.5881 2.73

IVSO 23 47 0.8809 0.5768 0.8530 0.6427 2.45

IVISSA 41 44 0.9004 0.5556 0.8598 0.5275 2.52

MASS 29 55 0.9219 0.4493 0.8889 0.5957 2.88

CARS-Boss 21 54 0.8839 0.5679 0.8689 0.6107 2.62

MASS-Boss 21 59 0.9429 0.4229 0.8894 0.4824 2.88

IVISSA-Boss 20 65 0.9331 0.4542 0.8755 0.5802 2.67

The bold values represent the best performer in each table.
TABLE 7 Prediction results of PLSR based on hyperspectral data.

Feature extraction method Number of feature variables Number of latent variables (lvs) R2c RMSEC R2p RMSEP RPD

Boss 19 17 0.8964 0.5214 0.8191 0.7540 2.33

CARS 35 13 0.9179 0.5036 0.7964 0.7013 2.24

IVSO 44 12 0.8709 0.5408 0.8087 0.8598 2.01

IVISSA 70 12 0.8718 0.5698 0.8313 0.7504 2.07

MASS 53 11 0.8505 0.6547 0.8136 0.7041 2.15

CARS-Boss 27 16 0.9081 0.4529 0.8784 0.6762 2.50

MASS-Boss 21 17 0.8747 0.6079 0.8717 0.5661 2.89

IVISSA-Boss 17 12 0.8727 0.5784 0.8684 0.6433 2.55

The bold values represent the best performer in each table.
TABLE 8 Prediction results of PLSR based on fluorescence spectral data.

Feature extraction method Number of feature variables Number of potential variables R2c RMSEC R2p RMSEP RPD

Boss 31 17 0.8687 0.6612 0.7577 0.6458 2.25

CARS 25 15 0.8588 0.6262 0.8159 0.7237 2.36

IVSO 23 14 0.8068 0.7344 0.7625 0.8171 2.05

IVISSA 41 30 0.9522 0.3851 0.7467 0.7089 2.20

MASS 29 16 0.8530 0.6164 0.8123 0.7743 2.30

CARS-Boss 21 16 0.8376 0.6715 0.7718 0.8058 2.01

MASS-Boss 21 14 0.8017 0.7880 0.7655 0.7024 1.85

IVISSA-Boss 20 16 0.8438 0.6697 0.7999 0.7293 2.23

The bold values represent the best performer in each table.
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Boss secondary extraction method could effectively filter out the

feature variables, which could well represent the spectral data.

Among them, MASS-Boss-PLSR exhibited a slightly superior R2
p

RMSEP and RPD to MASS-Boss-ELM could be considered the

most suitable prediction method for kiwifruit SSC based on

hyperspectral data. The optimal prediction method for kiwifruit

SSC based on fluorescence spectral data is MASS-Boss-ELM, whose

prediction indicators far exceeded the IVISSA-PSO-LSSVM and

CARS-PLSR.

The method followed in this study was compared with those

reported in the literature, and the comparison results are listed in

Table 13. It can be seen from Table 13 that Moen et al. (Moen et al.,

2021) used different machine learning technologies to study the

correlation between kiwifruit spectral information and its SSC, and

found that the best prediction method was UVE-PLS, with the

RMSEP of 1.047 and the R2
p of 0.39. Benelli et al. (Benelli et al., 2022)

used the PLS model based on hyperspectral imaging technology to

evaluate the maturity of “Hayward” kiwifruit, with the R2
p was in the
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range of 0.85~0.94, and RMSE was in the range of 1.10-0.73. The

best prediction method in this study was MASS-Boss-ELM based on

fluorescence spectral data, and its R2
p, RMSEP and RPD were 0.8894,

0.4824 and 2.88, respectively. Compared with the previous studies,

the R2
p obtained in this study has not been improved significantly,

but the RMSEP is the lowest, specifying that the MASS-Boss-ELM

is superior.
4 Conclusions

This study explored the efficient prediction of hyperspectral and

fluorescence spectral data for nondestructive detection of kiwifruit

SSC (soluble solid content). Combining the six pretreatment methods

and the PLSR model, the best pre-processing methods for

hyperspectral and fluorescence spectral data were BS (boxing

smoothing) and SG (Savitzky-Golay), respectively. Then, five

primary and three secondary feature extraction algorithms were
TABLE 9 Prediction results of PSO-LSSVM based on hyperspectral data .

Feature extraction method Number of feature variables R2c RMSEC R2p RMSEP RPD

Boss 19 0.8403 0.7085 0.8056 0.6227 2.02

CARS 35 0.8126 0.7676 0.7710 0.6758 2.03

IVSO 44 0.8231 0.7456 0.8532 0.5411 2.54

IVISSA 70 0.8964 0.5710 0.7576 0.6953 1.94

MASS 53 0.8817 0.6098 0.7698 0.6775 1.93

CARS-Boss 27 0.8273 0.7367 0.7805 0.6616 2.10

MASS-Boss 21 0.8265 0.7385 0.8169 0.6042 2.28

IVISSA-Boss 17 0.8651 0.6512 0.7435 0.7152 2.01

The bold values represent the best performer in each table.
frontier
TABLE 10 Prediction results of PSO-LSSVM based on fluorescence spectral data.

Feature extraction method Number of feature variables R2c RMSEC R2p RMSEP RPD

Boss 31 0.8987 0.5659 0.6119 0.8922 1.47

CARS 25 0.8739 0.6312 0.7099 0.7713 1.98

IVSO 23 0.8523 0.6832 0.5851 0.9225 1.50

IVISSA 41 0.9582 0.3634 0.7473 0.7199 2.29

MASS 29 0.8677 0.6467 0.7650 0.6942 2.19

CARS-Boss 21 0.8547 0.6777 0.6372 0.8626 1.65

MASS-Boss 21 0.8050 0.7850 0.7206 0.7569 1.61

IVISSA-Boss 20 0.8359 0.7201 0.7691 0.6881 1.97

The bold values represent the best performer in each table.
TABLE 11 The best PSO optimization parameters.

Spectral Type Feature extraction method s2 g

Hyperspectral IVSO 2.3021 3.5083e+06

Fluorescence spectral IVISSA 3.1623e+08 1.0236e+06
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used to reduce the pre-processed spectral data. Three prediction

models have been established: ELM, PLSR, and PSO-LSSVM. The

prediction results of PLSR and ELM based on the hyperspectral and

fluorescence spectral datasets were better. The best prediction method

corresponding to the hyperspectral dataset was MASS-Boss-PLSR,
Frontiers in Plant Science 13
and its R2
p, R

2
c and RPD were 0.8717, 0.8747 and 2.89, respectively.

The best prediction method corresponding to the fluorescence

spectral dataset was MASS-Boss-ELM, and its R2
p, R

2
c and RPD were

0.8894, 0.9429 and 2.88, respectively. Whereas PSO-LSSVM displayed

the worst prediction results. In conclusion, the MASS-Boss-ELM
A

B

D

E
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FIGURE 12

Prediction results of different optimal methods: (A) hyperspectral-MASS-Boss-ELM; (B) hyperspectral-MASS-Boss-PLSR; (C) hyperspectral-IVSO-PSO-
LSSVM; (D) fluorescence-MASS-Boss-ELM; (E) fluorescence-CARS-PLSR; (F) fluorescence-IVISSA-PSO-LSSVM.
TABLE 12 Comparison of optimal results based on different feature extraction methods and models.

Spectral Type Prediction Method R2c RMSEC R2p RMSEP RPD

Hyperspectral data

MASS-Boss-ELM 0.9000 0.5433 0.8671 0.5761 2.83

MASS-Boss-PLSR 0.8747 0.6079 0.8717 0.5661 2.89

IVSO-PSO-LSSVM 0.8231 0.7456 0.8532 0.5411 2.54

Fluorescence spectral data

MASS-Boss-ELM 0.9429 0.4229 0.8894 0.4824 2.88

CARS-PLSR 0.8588 0.6262 0.8159 0.7237 2.36

IVISSA-PSO-LSSVM 0.9582 0.3634 0.7473 0.7199 2.29

The bold values represent the best performer in each table.
frontier
TABLE 13 Comparison of the prediction results with the other methods.

Literature Method R2p RMSEP RPD

Moen, Nilsen, et al., 2021 UVE-PLS 0.3900 1.0470 –

Benelli, Cevoli, et al., 2022 PLS 0.8500~0.9400 1.1000~0.7300 –

This study MASS-Boss-ELM 0.8894 0.4824 2.88

“-” indicates that RPD was not used in the literature.
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method based on the fluorescence spectral dataset was the best non-

destructive prediction method for kiwifruit SSC.

The research methods followed in this study could be improved

further. For example, the optimal pre-processing methods for the two

types of spectral datasets are different, and the best prediction models

for each kind of spectral dataset are also different, which is not

conducive to the follow-up research and development of non-

destructive testing devices for agricultural products. Therefore,

more spectral feature extraction algorithms and different models

need to be studied further to find the best prediction model suitable

for the different spectral datasets and apply it to the non-destructive

testing of other parameters, such as pH and the hardness of kiwifruit.
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