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Man Zhou3* and Lijia Xu1*

1College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan, China,
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Rapid nondestructive testing of peanut seed vigor is of great significance in

current research. Before seeds are sown, effective screening of high-quality

seeds for planting is crucial to improve the quality of crop yield, and seed vitality is

one of the important indicators to evaluate seed quality, which can represent the

potential ability of seeds to germinate quickly and whole and grow into normal

seedlings or plants. Meanwhile, the advantage of nondestructive testing

technology is that the seeds themselves will not be damaged. In this study,

hyperspectral technology and superoxide dismutase activity were used to detect

peanut seed vigor. To investigate peanut seed vigor and predict superoxide

dismutase activity, spectral characteristics of peanut seeds in the wavelength

range of 400-1000 nm were analyzed. The spectral data are processed by a

variety of hot spot algorithms. Spectral data were preprocessed with Savitzky-

Golay (SG), multivariate scatter correction (MSC), and median filtering (MF),

which can effectively to reduce the effects of baseline drift and tilt. CatBoost

and Gradient Boosted Decision Tree were used for feature band extraction, the

top five weights of the characteristic bands of peanut seed vigor classification are

425.48nm, 930.8nm, 965.32nm, 984.0nm, and 994.7nm. XGBoost, LightGBM,

Support Vector Machine and Random Forest were used for modeling of seed

vitality classification. XGBoost and partial least squares regression were used to

establish superoxide dismutase activity value regression model. The results

indicated that MF-CatBoost-LightGBM was the best model for peanut seed

vigor classification, and the accuracy result was 90.83%. MSC-CatBoost-PLSR

was the optimal regression model of superoxide dismutase activity value. The

results show that the R2 was 0.9787 and the RMSE value was 0.0566. The results

suggested that hyperspectral technology could correlate the external

manifestation of effective peanut seed vigor.

KEYWORDS

hyperspectral imaging technology, peanut seed vitality, superoxide dismutase activity,
nondestructive testing technology, data analysis
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1 Introduction

Peanut is an important oil crop mainly used for oil production,

and by-products of peanut also contain many other functional

compounds such as protein, fiber, polyphe-nols, antioxidants,

vitamins and minerals, which can be added as functional

ingredients in many processed foods (Arya et al., 2016). Factors

affecting the yield and quality of peanuts include climate temperature

and humidity, fertilization ratio, sowing density, degree of pests and

diseases, and seed vigor of peanut seeds(Gomes et al., 2009). Among

many factors, seed vigor plays a crucial role (Tu et al., 2022). If the

problem of aging or vigor decline of peanut seeds during storage is

not solved, it will cause delayed seed germination (Wang et al., 2021),

poor growth potential, weak stress resistance, and biological Yields

and economic yields are reduced, thereby affecting agricultural

production. Therefore, in the production and application of peanut

crops, judging the vigor of peanut seeds has a guiding role in

improving the yield and quality of peanuts.

Generally speaking, the seed vigor of peanut is difficult to judge

by manual observation. The appearance of aged peanut seeds is

almost the same as that of fresh peanut seeds except that the gloss of

the seed surface is slightly rough. Therefore, methods such as

standard seed germination detection method (Zhang et al., 2020),

field emergence test method (Kaya et al., 2019), conductivity

measurement method (Xiang et al., 2020), TTC detection method

(Liu et al., 2009), and red ink measurement method (Mattioni et al.,

2015) are usually used to identify whether peanut seeds are fresh or

aged. However, these methods require experienced operators, and

farmers cannot master this skill well. At the same time, these

methods are highly destructive, inefficient, time-consuming, and

complicated in operation procedures, and are not suitable for rapid

non-destructive testing of peanut seed viability. Compared with

traditional destructive inspection methods, machine vision

technology (Tan et al., 2022) and near-infrared spectroscopy

technology (Jasinski et al., 2016) have been widely used in seed

quality inspection, such as variety (Kotwaliwale et al., 2019), mildew

(Fu et al., 2017), vigor (Liu et al., 2021), and defect (Wang et al.,

2022). However, machine vision only uses phenotypic features, such

as color, size, shape and surface texture, and is not suitable for

predicting the chemical composition of a sample, because the

internal chemical content of seeds changes after aging (Huang &

Chien, 2017); Near-infrared spectroscopy can be used to assess the

chemical composition of a sample, but it is only used to obtain

spectral information from a single point of light, and is always

affected by the uniformity of the sample distribution, and is not the

best choice (ElMasry et al., 2019).

Composed of spatial imaging, spectroscopy (Kucha et al., 2021),

and chemical measurement tools, hyperspectral imaging techniques

(Xu et al., 2021) can provide information on seed quality

characteristics and characterization parameters(Jun Yang et al.,

2021), overcoming the limitations of machine vision and near-

infrared spectroscopy techniques(Laborde et al., 2021). In recent

years, some studies have used hyperspectral imaging technology as a

powerful tool for seed vigor monitoring. Compared with the

traditional seed vigor detection technology based on biological
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properties, the non-destructive seed vigor detection technology

based on hyperspectral imaging technology is gradually attracting

the attention of the seed industry. Some scholars only use

hyperspectral imaging technology to discriminate seed vigor. Such

as He Xiantao et al. used hyperspectral imaging technology to

predict rice seed viability within three years, combined with various

preprocessing and feature band extraction algorithms, the results

showed that the classification accuracy reached 94.38% (He et al.,

2019). Some studies combine hyperspectral imaging techniques

(Zou et al., 2022) and texture feature methods. Such as Wang

Zheli et al. used hyperspectral imaging technology and

chemometrics to quickly and nondestructively classify new and

old corn seeds, and established a model of spectral and image

texture features, with a classification accuracy rate of 95% (Wang

et al., 2022). There are also studies that integrate hyperspectral

imaging technology and mapping technology. For example, Yan Lei

et al. used hyperspectral imaging technology combined with

machine learning and convolutional neural network to identify

seed germination with an accuracy of 99.96% (Pang et al., 2020).

Previous studies have demonstrated the potential of

hyperspectral imaging techniques and provided a good reference

for the field of seed quality inspection. However, most of the current

research stays at the macroscopic stage, and only uses hyperspectral

technology to identify whether the seeds are aging or not, and has

not analyzed the factors affecting the seed vigor. In fact, factors that

affect seed vigor include seed moisture content, protein content,

superoxide dismutase content (SOD) (Matłok et al., 2022), catalase

(CAT), ascorbate peroxidase (As A-POD) and guaiacol peroxidase

(G-POD) (Zhao et al., 2021). Among them, SOD is involved in

catalyzing the disproportionation reaction with reactive oxygen

species and free radicals as substrates, and its activity level

directly affects the seed vigor (Bandeira et al., 2014). Therefore,

the SOD of peanut seeds was measured and modeled in this paper.

The overall goal of this study was to examine the potential of

hyperspectral imaging in the detection of aged peanut seeds using

samples of varying degrees of aging, while establishing a

microscopic content analysis of superoxide dismutase in peanut

seeds. The specific goals are (1) To establish a hyperspectral-based

classification model for peanut seed viability detection through

standard roll paper germination tests; (2) To identify and evaluate

the best characteristic wavelengths for peanut seed detection; (3)

Determination of peanut seed SOD value by tetrazolium blue

(NBT) method, and establishment of a peanut seed SOD

regression model based on hyperspectral spectrum. From the

perspective of spectroscopy, it is revealed that the characteristic

band, seed vigor index and SOD value have strong correlation,

which provides a new method for seed quality evaluation.
2 Materials and methods

The process of raw material processing is shown in Figure 1.

Figure 1A shows that all peanut seeds are divided into 5 types of

peanut original seed treatments after removing the factors such as

damage and mildew, namely A0~A4, A0 peanut seeds represent
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fresh and unaged peanut seeds, which are cultivated in an

environment with a temperature of 30°C and a humidity of 30%.

At the same time, the peanut seeds of groups A1~A4 were

artificially aged and placed in a constant temperature and

humidity incubator with a temperature of 40°C and a humidity of

90% to simulate natural aging. Among them, the aging time of

peanut seeds in groups A1~A4 ranged from 24h to 96h. As shown

in Figure 1B, the peanut seeds obtained after treatment were divided

into two groups, and 400 peanut seeds in one group were used for

the roll paper germination test, which was used for the

establishment of the subsequent peanut seed vigor classification

model. Another group of 100 peanut seeds was used for the

determination of superoxide dismutase value and used for the

establishment of regression model of peanut seed superoxide

dismutase value. Collect hyperspectral images of all peanut seeds

to obtain their spectral data information, as shown in Figure 1C,

and obtain the spectral curve of peanut seeds, as shown in

Figure 1D. The peanut seeds tested in the roll paper germination

test are shown in Figure 1E, and the relevant indicators of seed vigor

were recorded, including germination rate, germination potential,

germination index, average germination time, vitality index, and

simple vitality index. As shown in Figure 1F, the SOD value was

measured and its data information was recorded. Finally, the

correlation analysis of the average spectral reflectance value,

germination rate, germination potential, germination index,

average germination time, vigor index, simple vigor index, and

the average value of superoxide dismutase in each group of A0~A4

groups was established.
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2.1 Sample preparation

In order to expand peanut seed samples with different vigor, it is

necessary to perform aging of peanut seeds. Studies have shown that

the overall metabolic pathways of natural aging and artificial aging

were similar (Xu et al., 2013), and there was no significant difference

in the aging mechanism. Therefore, artificial aging was used to treat

peanut seeds. 2.5 kg of Sichuan Tianfu peanuts were purchased in

the year of 2021. The peanut seeds with no mildew and damage

were selected, and were divided into 5 equal parts. Each part of

0.5 kg was evenly spread in the storage tray. One group of peanuts

was used as the reference group and placed at room temperature

(temperature of 20°C, relative humidity of 30%) as unaged peanut

seeds (A0), while the other 4 groups of peanuts were placed in an

intelligent constant temperature and humidity incubator with a

constant temperature. The humidity of the constant temperature

and humidity incubator was set to 90%, and the temperature was set

to 40°C. On the first day, the first group of peanuts was placed in the

incubator and labeled as aging treatment 4d (A4). On the second

day, the second group of peanuts was placed in the incubator and

labeled as aging treatment 3d (A3). On the third day, the third

group of peanuts was placed in the incubator and labeled as aging

treatment 2d (A2). On the fourth day, the fourth group of peanuts

was placed in the incubator and labeled as aging treatment 1d (A1).

When the aging treatment reached the fifth day, all peanuts were

uniformly taken out and placed at room temperature for 2 days to

make their moisture content reach a similar level, and then placed

in a low temperature box of use.
A B

DE
F

C

FIGURE 1

Flow chart of raw material processing steps: (A) Peanut aging treatment; (B) Two types of germination and SOD determination; (C) Hyperspectral
determination; (D) Spectral data analysis; (E) Roll paper germination test; (F) Peanut superoxide dismutase enzyme activity assay.
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2.2 Hyperspectral imaging system and
analysis and processing

The hyperspectral system tested is the GaiaSorter Hyperspectral

Sorter from Zolix Co., ltd. (Beijing, China). And integrated

Imspector series of Imaging spectrometers from Spectral Imaging

Ltd. (Oulu, Finnish). The hyperspectral camera model is Gaiafluo-

VN-HR(Zolix Co., ltd., Beijing, China), the spectrometer adopts a

transmission grating (PGP) structure, the spectral sampling rate is

0.6 nm, and the scanning mode is built-in push-broom. The spectral

range was 384-1034nm, the spectral resolution was 2.8nm, the

spectral collection point was 0.65nm, the effective slit length was

8.7mm, the relative aperture was F/2.4, the slit width was 30um, A/

D The output is 12, the exposure time range is 0.01-10000ms, the

camera pixel is 1344×1024, the pixel size is 6.45×6.45um, the imager

power consumption is 8V·A, the rated power of halogen light source

is 200W, and the scanning stroke of the sample station is 400mm.

The control software name is SpecView (SpecView ltd., Uckfield,

UK). Hyperspectral equipment core components included a

uniform light source, a spectral camera, an electronically

controlled mobile platform (or conveyor belt), a computer and

control software. Its working principle was to illuminate the object

to be measured (sample) placed on the electronically controlled

moving platform (or conveyor belt) through the light source, and

the emitted light of the sample was captured by the spectral camera

through the lens, and an one-dimensional image and spectral

information were obtained. The moving platform (or conveyor

belt) drove the sample to run continuously, so that continuous one-

dimensional images and real-time spectral information can be

obtained. All data were recorded by computer software to obtain

a three-dimensional data cube containing image information and

spectral information. The hyperspectral instrument is located in an

open room of 15 square meters, Before the experiment starts,

the curtains in the room are drawn to block all external light, the

halogen light source inside the hyperspectral instrument is

turned on, and the brightness of the indoor halogen light source

is adjusted, and after the hyperspectral image is not saturated and

distorted, the official collection of hyperspectral data collection

information begins.

Before the image acquisition experiment, the instrument was

warmed up for 30 mins, and then the instrument was adjusted and

the exposure time of the camera was determined to be 10 ms, and

the moving speed of the displacement platform was 1.5 mm/s. The

peanut seed samples were placed on the black cardboard of the

sample tray in 4 rows and 5 columns. After movement towards the

electronically controlled platform, the hyperspectral imaging

instrument captured the hyperspectral image of the sample and

transmitted it to the computer for storage, and scanned each aging

process. Gradient peanut seeds were 100, and a total of 500 seed

samples were scanned. After the acquisition was completed, the

original hyperspectral image was subjected to black and white

correction processing to remove the dark current noise

introduced in camera. The formula for black and white correction

is as follows:
Frontiers in Plant Science 04
Rci =  
Sampleci − darkci
Whiteci − darkci

(1)

In the formula, Sampleci is the original sample data, darkci is the

dark background data, Whiteci is the whiteboard data, and Rci is the

corrected sample data.
2.3 Standard germination test

Two layers of wet filter paper were spread in the germination

box, 80 peanut seeds were selected from each group of the collected

seeds, and placed them in the germination box in the order of

spectrum collection according to the arrangement of 10 × 8 in each

group. After being sprayed with a small amount of water, the box

was closed and placed in an intelligent constant temperature and

humidity box, under light (28°C, 8 h) and dark (20°C, 16 h)

conditions, and then taken out and germinated every day. The

seeds were sprayed and watered, and the relevant vigor indexes

were recorded.

The remaining 100 peanut seeds were subjected to SOD

superoxide dismutase physical and chemical index test. The

relevant calculation formula of the vitality index is as follows:

Germination potentialðGPÞ = m1

M
� 100% (2)

Germination rateðGEÞ = m2

M
� 100% (3)

Germination indexðGIÞ =o
Gt
Dt

(4)

Mean germination timeðMGTÞ = oGt� Dt

oGt
(5)

Vitality indexðVIÞ = GI� S (6)

Simple vitality indexðSVIÞ = GP� S (7)

In the formula, m1 is the number of normally germinated seeds

within 3d; m2 is the number of normally germinated seeds within

8d; M is the total number of test seeds; Dt is the number of days of

germination; Gt is the number of germinated seeds per day

corresponding to the end of germination; average seedling length

(cm); S is the root weight after 8 days of germinated peanuts.
2.4 Superoxide dismutase(SOD) activity
assay

SOD activity was closely related to peanut seed vigor and played

a key role in its subsequent germination. 20 peanut seeds of 5 aging

groups were randomly sampled for SOD activity determination.

The method of determination was nitroblue tetrazolium (NBT)

method (Kono, 2022). 1 g of peanut seeds was taken, water was
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absorbed on filter paper, and then put it in a mortar, 5 ml of pre-

cooled phosphate buffer was added, and fully ground into a

homogenate on an ice bath, then the homogenate was poured

into a 10 mL centrifuge tube, which was shaken for

homogenization, and frozen and centrifuged at 4°C and 12000

rpm for 15min with a high-speed centrifuge. The supernatant was

the crude SOD extract. The supernatant was poured into a test tube

and stored at 0°C-4°C for later use. After mixing the solutions, one

control group was placed under dark conditions, while the other

groups were placed under 4000 Lux light, and reacted at 20°C for

10-20 min. After the reaction, a small amount of samples were taken

in a 96-well microplate, and the absorbance at 560 nm was

measured with a multi-function microplate reader Spark10M (A)

(Hou et al., 2019).

The formula for calculating SOD (superoxide dismutase)

activity (Zhao, 2017) is as follows:

SOD activity value
U

gFW
=
½(A0 − Ab) − ½(As − Ab)� � VT

1
2 � (A0 − Ab)�W � Vs

(8)

In the formula: Ab is the absorbance value of the dark control;

A0 is the absorbance value under light; As is the absorbance value of

rice seeds; VT is the total volume of enzyme solution (mL); Vs is the

volume of enzyme solution used for measurement (ml); W is the

fresh weight of the sample.
2.5 Modeling method

Hyperspectral seed vigor classification algorithm mainly uses

Extreme gradient boosting(XGBoost), Light Gradient Boosting

Machine(LightGBM), Support vector machine(SVM), Random
Frontiers in Plant Science 05
forest(RF); SOD prediction algorithm adopts Partial least squares

regression(PLSR) and XGBoost (Chen et al., 2016). XGBoost is an

iterative tree-like algorithm that combines multiple weak classifiers

together into a strong classifier, which is an implementation of

Gradient Boosting Decision Number (Zhang et al., 2021).

LightGBM (Ke et al., 2017) is an iterative boosting system, which

is an improved variant of gradient decision tree (GBDT). The

gradient boosting decision tree in the LightGBM algorithm is

obtained by multiple iterations of the given training data set, and

in each iteration, a new tree is refitted with the gradient information

to join the previous iteration tree, and this in the function space can

be regarded as an iterative linear combination process (Wang &

Wang, 2020). SVM (Cortes & Vapnik, 1995) constructs the

hyperplane as the decision surface and maximizes the isolation

edge between the two classes in the classification process (Yang &

Gao, 2020). The kernel function used in this study is the radial basis

function. RF (Chen & Ishwaran, 2012) classifier is an ensemble

classifier model composed of many decision tree classification

models. RF classifier is insensitive to parameters, not easy to over

fit, and has a fast training speed, which is more suitable for multi-

classification problems (Wang & Chen, 2020). PLSR (Deal, 2005) is

a new multivariate statistical data analysis method. It mainly studies

the regression modeling of multiple dependent variables to multiple

independent variables (Burnett et al., 2021).The model structure is

shown in Figure 2.
2.6 Spectral preprocessing methods

In the acquisition of raw spectral data, it not only contains

useful information, but also is interfered by stray light, instrument
FIGURE 2

Algorithm flow chart: (A) Peanut seed viability classification model; (B) SOD regression model.
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noise, sample background, baseline drift and other factors, all of

which affect the selection of characteristic wavelengths, thereby

affecting the quantitative and qualitative analysis results of the

spectrum. Therefore, in order to make the extracted spectral

information more accurately reflect the change of the sample

curve, it is necessary to preprocess the original spectrum to

eliminate or reduce the influence of light intensity, environmental

factors and noise interference on the spectral information as much

as possible. In this experiment, the Savitzky-Golay(SG) (Wang et al.,

2021), multivariate scatter correction(MSC) (Liang et al., 2018) and

median filter(MF) (Adams, 2021) methods were used to preprocess

the original data.
2.7 Feature band extraction methods

The spectral data collected by hyperspectral had a large number

of bands, high in-formation redundancy, large space required for

data storage, long processing time, and was prone to the

phenomenon of dimensional disaster, that was, the classification

accuracy was reduced. Therefore, it is necessary to extract spectral

data below full wavelength. The characteristic wavelengths with

strong correlation with peanut seed vigor index were obtained. In

this paper, CatBoost (Bentejac et al., 2021) and GBDT (Zhou et al.,

2020) were used to select characteristic wavelengths, and the

characteristic wavelengths with the top 15 weights were extracted

to simplify the establishment of subsequent models and reduce the

amount of calculation.
3 Results and discussion

3.1 Standard germination results

After 8 days of germination and culture, the test results of the

vitality index were as shown in Table 1.

The results in Table 1 show that, with increase of aging time, the

germination potential, germination rate, vigor index and simple

vigor index of peanut seeds de-creased significantly, and the average

germination time increased, indicating that the aging treatment

changed the relevant physical and chemical indexes of seed vigor,

thus affecting the vigor of peanut seeds.
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3.2 Superoxide dismutase(SOD) activity
results

Figure 3 is Boxplot of SOD values of peanuts with different

aging degrees. The overall trend that the SOD activity value of aged

peanut seeds was significantly lower than that of unaged peanut

seeds. The average SOD activity value of unaged peanut seeds is

above 3, and the average SOD activity value of aged peanut seeds is

below 3, and with the increase of aging time, the SOD activity value

is lower.
3.3 Spectral description

In the full band range of 384-1034nm, a large amount of noise

in the band range of 384-400nm and 1000nm-1034nm will directly

affect the subsequent model establishment results. After removing

the head-to-tail noise bands, spectral data of 400-1000nm will be

retained for curve drawing. Figure 4A indicate that the raw average

spectral curve of peanut seeds show an upward trend, which may be

due to the fact that aging accelerated the degradation of the internal

storage substances of peanut seeds and reduced the content of

organic matter, thereby increasing the spectral reflectance. In the

spectral band of 400 nm-700 nm, the spectral reflectance of peanut

seeds have a certain separability, which is due to the difference in the

content of pigments and organic matter inside the peanut seeds; in

the spectral band of 700 nm-1000 nm, the spectral reflectance have

obvious differences mainly due to cause by the organic chemical

bonds of peanut seeds. Figure 4B is a partial enlargement of

Figure 4A. Figure 4B shows there is an obvious difference in

spectral reflectance between aged and unaged peanuts, but there

is little difference in the spectrum of aged peanut seeds. The peak at

450 nm is due to the strong light reflectivity of starch at 455 nm, 465

nm, and 495 nm (Wang & Wang, 2022). There is a peak change at

550 nm, which is due to the distribution of the characteristic peaks

of soluble sugars (Sen, 2016) here. The spectral change around 920

nm is related to the absorption of protein. With the deepening of

aging, the protein content in peanut seeds decreased, resulting in

the increase of spectral reflectance. The spectral changes around 970

nm corresponded to the secondary ubiquitination stretching of the

O-H bond (Raj et al., 2021) and the tertiary stretching of the C-H

bond (Choi et al., 2021), causing the lipid peroxide reaction to occur
TABLE 1 Seed vigor index test result table.

aging group total number of samples seed vigor seedless vitality GP GE GI MGT VI SVI

A0 80 77 3 96.25% 96.25% 25.66 2.78 43.37 1.63

A1 80 68 12 76.25% 85% 21.20 3.24 37.52 1.50

A2 80 52 28 53.75% 65% 15.62 4.30 24.68 1.03

A3 80 31 49 28.75% 38.75% 8.95 5.74 14.05 0.61

A4 80 18 62 11.25% 22.5% 3.17 7.21 4.82 0.32
frontiers
A0, Unaged peanuts; A1, Peanuts aged 24 hours; A2, Peanuts aged 48 hours; A3, Peanuts aged 72 hours; A4, Peanuts aged 96 hours; GP, germination potential; GE, germination rate; GI,
germination index; MGT, average germination time; VI, vitality index; SVI, simple vitality index.
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inside the peanut seeds, resulting in the decomposition of organic

matter into CO2 and H2O (Kou et al., 2022). Figure 4C is the

original absorption spectrum extracted from the hyperspectral

images of all peanut seeds with different aging gradients, all

spectra have the same trend, indicating that peanut seeds have
Frontiers in Plant Science 07
the same absorption characteristics at full wavelengths, five main

absorption peaks are caused by the function of O—H (Liu et al.,

2014), C—H (Pjw & Sk, 2016) and other functional groups.

However, a large amount of useful information is masked by the

irregular appearance of peanuts, and it is necessary to use spectral

preprocessing methods to improve the signal-to-noise ratio of the

model and display more information. Figure 4D shows the

spectrum curve of peanuts after Savitzky-Golay preprocessing. It

can be seen that the preprocessed spectrum becomes smoother than

the original spectrum curve, which eliminates part of the noise,

which is conducive to subsequent modeling and analysis. Figure 4E

is the peanut spectrum curve after multivariate scatter correction

preprocessing. It can be seen that the preprocessed spectrum

becomes more shrunk. This is because the multivariate scatter

correction can effectively eliminate the spectral differences caused

by different scattering levels, and correct the baseline shift and offset

phenomenon of spectral data, thereby enhancing the correlation

between spectra and data. Figure 4F is the peanut spectrum curve

after preprocessing by median filter. The peaks in the spectrum data

tend to be flat, and the spectrum curve is optimized, so that the

position where the spectrum curve transitions from the peak to the

smooth band can better perform baseline simulation. The fitted

baseline changes more gently at this position, which can effectively

reduce the occurrence of under-fitting.
A B

D

E F

C

FIGURE 4

Spectral reflectance curve of peanuts. (A) Raw average spectral curves of peanut seeds with different aging gradients; (B) Partial enlarged view of
spectral reflectance curve; (C) Raw spectral curve of peanut; (D) SG preprocess spectral curve of peanut; (E) MSC preprocess spectral curve of
peanut; (F) MF preprocess spectral curve of peanut.
FIGURE 3

Boxplot of SOD values of peanuts with different aging degrees.
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3.4 Seed vigor classification model results

If the length of the germ exceeds 1.5 cm within 8 days of the

specified cultivation time, it is judged that the seed is germinating,

that is, it has vigor. Otherwise, it is judged that the seed has lost its

vigor, and 400 peanut seeds germinated and cultivated with rolled

paper were randomly selected according to the ratio of 7:3. They

were divided into the training set and the prediction set to train the

model and test the performance of the model. There were 280

peanut seeds in the training set, including 173 peanut seeds with

seed vigor, 107 peanut seeds without seed vigor, and 120 peanut

seeds in the prediction set, including 73 seed vigor peanut seeds and

47 peanut seeds without seed vigor. The model classification results

are as shown in Table 2.

After the feature band extraction, the classification accuracy of

the modeling results is generally improved. MF is the abbreviation

of median filter preprocessing method. In the optimal model MF-

CatBoost-LightGBM for CatBoost feature band extraction, the

feature wavelengths extracted by CatBoost included 802.51 nm,

878.08 nm, 907.02 nm, 930.8 nm, 938.75 nm, 946.71 nm, 965.32

nm, 967.99 nm, 970.65 nm, 973.32 nm, 981.33 nm, 984.0 nm,

989.35 nm, 992.02 nm, and 994.7 nm. The characteristic wavelength

distribution mainly exist in the near-infrared region of 900 nm-

1000 nm, because there is a certain correlation between the spectral

reflectance and pigment, water and protein in this band region (Liu

et al., 2014) as shown in Figure 5D. This result showed that this

band region contained more feature information, and the

correlation with peanut seed vigor is strong. Table 2 shows that

after the feature band extraction of CatBoost method, the accuracy

of modeling and classification is generally improved within 5%. The

weight map of CatBoost feature band is as shown in Figure 5A. The

characteristic wavelengths extracted by GBDT in the optimal model

MF-GBDT-XGBoost for GBDT feature band extraction included

403.88 nm, 411.07 nm, 425.48 nm, 549.73 nm, 799.92 nm, 807.69

nm, 833.66 nm, 849.3 nm, 930.8 nm, 944.05 nm, 965.32 nm, 978.66

nm, 984.0 nm, 981.33 nm and, 992.02 nm. The characteristic

wavelength distribution is mainly around 430 nm and 900-1000

nm. This is because starch have a strong reflectivity near the 450nm
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wavelength (G.-l. Wang et al., 2021), and amino acids, lactose,

biological enzymes and other substances have a strong reflectivity in

the 900-1030 nm band (Pan et al., 2019), which shows that these

substances and bands are strongly related to the vigor of peanut

seeds as shown in Figure 5B. After the feature bands are extracted by

GBDT method, the accuracy of modeling and classification is

generally improved within the range of 1%-10%. The weights of

GBDT feature bands are as shown in Figure 5C. However, Table 2

shows that there are still some models due to too few modeling

bands after the feature band extraction, and the classification

accuracy is reduced. The least modeling effect is with the SVM

model. The classification accuracy is between 50% and 70%. The

classification effects of XGBoost, LightGBM and Random Forest are

all suitable, and the classification accuracy is about 80%. Among

them, MF-CatBoost-LightGBM built the model performs the best,

with a classification result of 91.07% for the prediction set and

90.83% for the prediction set. MF-CatBoost-LightGBM training set

confusion matrix and prediction set confusion matrix are as shown

in Figure 6. Figure 6 shows the classification effect of the MF-

CatBoost-LightGBMmodel on peanut seed viability. In the training

set, 280 peanut seeds, of which 255 peanut seeds were correctly

classified, and in the prediction set, 120 peanut seeds, of which 110

peanut seeds were classified correctly. The results show that

hyperspectral technology combined with MF-CatBoost-LightGBM

model has high classification performance for peanut seed vigor.
3.5 Prediction result of superoxide
dismutase activity value

After the SOD activity of 100 peanut seeds was measured, SG

(Savitzky-Golay), MSC(multivariate scatter correction) and MF

(median filter) were used to preprocess the raw data, CatBoost

and GBDT were used to extract characteristic bands from the

original bands, and PLSR and XGBoost regression algorithms

were used to predict SOD activity. The SOD activity prediction

results are as shown in Table 3. The results in Table 3 show that the

data modeling effect after MSC preprocessing is significantly
TABLE 2 Seed vitality classification results table.

XGBoost LightGBM SVM Random Forest

Full Sel1 Sel2 Full Sel1 Sel2 Full Sel1 Sel2 Full Sel1 Sel2

Raw
Cal 77.50 78.33 85.83 80.83 82.50 81.66 61.79 62.14 65.83 76.07 78.21 77.50

Pre 76.78 75.71 80.00 78.21 79.64 79.64 58.33 60.83 61.42 73.57 73.93 75.00

SG
Cal 77.5 75.83 85.83 80.83 82.50 81.66 61.79 62.14 65.83 80.00 82.5 80.83

Pre 76.78 75.71 80.00 78.21 79.64 79.64 58.33 60.83 58.33 76.07 78.21 79.64

MSC
Cal 85.00 88.33 86.66 83.33 85.83 86.66 61.79 62.14 62.50 79.29 83.33 80.83

Pre 80.36 84.29 84.64 76.43 82.85 75.71 58.33 60.83 59.16 76.67 81.79 79.16

MF
Cal 84.64 90.00 87.14 88.57 91.07 89.16 61.78 62.14 65.83 84.64 85.83 86.66

Pre 82.50 87.14 88.92 87.14 90.83 87.14 58.33 60.83 62.14 80.71 82.85 86.07
frontier
Cal, calibration; Pre, prediction; Raw , raw data; Full , full wavelengths; Sel1 , selected wavelengths by CatBoost; Sel2 , selected wavelengths by GBDT; SG , Savitzky-Golay; MSC , multivariate
scatter correction; MF , median filter.
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improved. After preprocessing, the R2 is about 90%, and the RMSE

value is also significantly reduced. The optimal model is extracted

from the CatBoost feature band. In MSC-CatBoost-PLSR, the

extracted 15 characteristic bands are 406.28 nm, 408.67 nm,

442.35 nm, 466.55 nm, 468.97 nm, 505.52 nm, 601.81 nm, 611.79

nm, 684.72 nm, 733.06 nm, 758.68 nm, 823.26 nm, 907.02 nm,

941.4 nm, and 962.66 nm, the weight map of CatBoost feature band

extraction is as shown in Figure 7A. Figure 7B shows the full-band

distribution of CatBoost feature band extraction, and the bands

near 530 nm are related to chlorophyll content. In the optimal

model MSC-GBDT-PLSR for GBDT feature band extraction, the
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extracted 15 feature bands are 478.69 nm, 483.56 nm, 493.3 nm,

654.42 nm, 661.98 nm, 684.72 nm, 781.84 nm, 794.75 nm, 805.1

nm, 825.85 nm, 862.36 nm, 880.71 nm, 917.58 nm, 922.86 nm, and

975.99 nm, the GBDT feature band extraction weight map is as

shown in Figure 7C, and the characteristic areas are mainly

concentrated in the vicinity of 400 nm and 900 nm, indicating

that the SOD activity of peanut seeds is related to related substances

in this band, such as starch, protein and other substances. Figure 7D

is the characteristic band distribution map of GBDT, the vicinity of

760 nm is related to the oxygen content (Yuan et al., 2022), and 470

nm-490 nm is related to the nitrogen content (Li et al., 2022).
A B

FIGURE 6

MF-CatBoost-LightGBM confusion matrix: (A) Training set confusion matrix; (B) prediction set confusion matrix.
A B

DC

FIGURE 5

Classification model feature band extraction map: (A) CatBoost feature band extraction weight map; (B) CatBoost feature band extraction in all
bands; (C) GBDT feature band extraction weight map; (D) GBDT feature band extraction in all bands.
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Among them, the optimal model MSC-CatBoost-PLSR training set

R2 is 98.34%, RMSE value is 5.41%. The training set SOD activity

prediction result is as shown in Figure 8A, the prediction set R2 is

97.87%, RMSE value is 5.66%. The SOD activity prediction result of

the prediction set is as shown in Figure 8B, which shows that the

hyperspectral imaging system could accurately predict the SOD

activity of peanut seeds. Figure 7 shows that the maximum error of

the training set is lower than 0.3, and the maximum error of the

prediction set is lower than 0.2. The results show that the
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hyperspectral technology combined with the MSC-CatBoost-PLSR

model has a high prediction performance for the SOD activity value

of peanut seeds.
3.6 Correlation analysis

The top five weights of the characteristic bands of peanut seed

vigor classification are 425.48nm, 930.8nm, 965.32nm, 984.0nm, and
A B

DC

FIGURE 7

Regression model feature band extraction map: (A) CatBoost feature band extraction weight map; (B) CatBoost feature band extraction in all bands;
(C) GBDT feature band extraction weight map; (D) GBDT feature band extraction in all bands.
TABLE 3 SOD activity prediction result table.

PLSR XGBoost

Full. Sel1. Sel2. Full. Sel1. Sel2.

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Raw
Cal 0.5942 0.6622 0.6433 0.5817 0.6358 0.5645 0.5927 0.5355 0.7107 0.5278 0.6491 0.4630

Pre 0.5366 0.6397 0.6062 0.6260 0.6073 0.5862 0.5322 0.6189 0.5935 0.6147 0.5549 0.5899

SG
Cal 0.4875 0.6820 0.5991 0.5842 0.5839 0.6873 0.4716 0.6376 0.5270 0.6726 0.6343 0.5738

Pre 0.4510 0.7112 0.5313 0.5849 0.5580 0.5679 0.4278 0.7138 0.4278 0.7138 0.4278 0.7138

MSC
Cal 0.9040 0.1309 0.9834 0.0541 0.9769 0.0676 0.9658 0.0736 0.9724 0.0666 0.9592 0.0804

Pre 0.8701 0.1483 0.9787 0.0566 0.9659 0.0755 0.9542 0.0852 0.9563 0.0825 0.9247 0.1094

MF
Cal 0.6474 0.5272 0.6428 0.5528 0.6890 0.5701 0.7352 0.4853 0.7368 0.4838 0.7809 0.4414

Pre 0.5302 0.6447 0.6358 0.5645 0.6881 0.5643 0.6959 0.5655 0.7009 0.5158 0.7363 0.4842
fronti
Cal, calibration; Pre, prediction; Raw, raw data; Full, full wavelengths; Sel1, selected wavelengths by CatBoost; Sel2, selected wavelengths by GBDT; R2, Correlation coefficient; RMSE, root mean
square error; SG, Savitzky-Golay; MSC, multivariate scatter correction; MF, median filter.
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994.7nm, respectively. The top five predicted characteristic band

weights of SOD value of peanut seeds are 406.28nm, 654.42nm,

758.68nm, 922.86nm and 962.66nm respectively. The average value

of spectral reflectance and the average value of SOD value of peanut

seeds in each group of A0~A4 groups were calculated. The

correlation analysis of peanut seed vigor index(germination rate,

germination potential, germination index, average germination time,

vitality index, and simple vitality index), average spectral reflectance,

average SOD, top five seed vigor classification characteristic band

weights, and SOD value prediction characteristic band weight top five

in groups A0~A4 were established. Figure 9 shows the heat map of

the correlation analysis. It can be seen from the figure that the self-

growth index of seed vigor has a high correlation, almost all reaching

1, and GE, GP, GI, VI, and SVI are positively correlated, while MGT

is negatively correlated with other seed vigor indexes. This is due to

the calculation formula of the seed vigor index, and the average

germination time is a negative index of the seed vigor index.

Generally, the higher the vigor of peanut seeds, the shorter the

average germination time. The bands at 922.86nm, 930.8nm,
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962.66nm, 965.32nm, 984nm and 994.7nm had strong correlation

with peanut seed vigor index, and the correlation with GE was

0.35~0.46, and GP and GI was 0.37~0.48. The correlations with

MGTwere -0.41~-0.52, and with VI and SVI were 0.36~0.47. It is not

difficult to see that most of these bands come from the characteristic

bands of peanut seed vigor classification, which are consistent with

the previous description of peanut seed vigor classification. All

characteristic bands are also highly correlated with the SOD value

of peanut seeds, up to 0.52, which is consistent with the regression

analysis of peanut seeds SOD value described above. The most

important thing is that the SOD value of peanut seeds has a strong

correlation with the peanut vigor index, reaching 0.8, this also verifies

the fact that SOD participates in the catalytic disproportionation

reaction with reactive oxygen species and free radicals as substrates,

and its activity level directly affects the seed vigor.
4 Conclusion

Seed vigor plays a crucial role in crop growth stage, and SOD

enzyme activity is highly correlated with seed vigor indicators. In

this paper, hyperspectral imaging technology was used to identify

the vigor of peanut seeds and predict the activity of SOD inside the

seeds. After the peanut seeds were germinated and cultivated by the

method of rolling paper germination, the correlation analysis of

characteristic bands, SOD activity and seed vigor indexes were

made. After comparing and analyzing the results of various

classification models, it was discovered that the MF-CatBoost-

LightGBM model has the best effect and the best discrimination

effect on peanut seed vigor. The accuracy rate of the training set

reach 91.07% and the accuracy rate of the prediction set reach

90.83%. The MSC-CatBoost-PLSR model has the best effect when

the SOD activity inside the seeds is analyzed by regression, in which

the R2 of the training set is 0.9834, the RMSE value is 0.0541, the R2

of the prediction set is 0.9787, and the RMSE value is 0.0566. The

correlation analysis of characteristic bands, vigor index and SOD

activity shows that SOD activity of peanut seeds has strong

correlation with seed vigor index, the correlation coefficient

between the vigor index and SOD value reaches 0.8. In summary,
FIGURE 9

Characteristic bands, vitality indicators and SOD activity heatmap.
A B

FIGURE 8

MSC- CatBoost-PLSR SOD activity prediction result graph: (A) Training set; (B) prediction set.
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the use of hyperspectral imaging technology can accurately

discriminate peanut seed vigor indexes, and can predict the SOD

activity inside seeds. At the same time, the strong correlation

between SOD activity and seed vigor indexes can provide new

opportunities for future seed quality testing machinery ideas.
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