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Introduction: Insect pests from the family Papilionidae (IPPs) are a seasonal

threat to citrus orchards, causing damage to young leaves, affecting canopy

formation and fruiting. Existing pest detection models used by orchard plant

protection equipment lack a balance between inference speed and accuracy.

Methods: To address this issue, we propose an adaptive spatial feature fusion and

lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes

several optimizations, such as the use of the Tanh-Softplus activation function,

integration of the efficient channel attention mechanism, adoption of the adaptive

spatial feature fusion module, and implementation of the soft Dlou non-maximum

suppression algorithm. We also propose a structured pruning curation technique to

eliminate unnecessary connections and network parameters.

Results: Experimental results demonstrate that ASFL-YOLOX outperforms previous

models in terms of inference speed and accuracy. Our model shows an increase in

inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately

10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms

compared to SSD300 and Faster R-CNN.We compressed themodel parameters of

ASFL-YOLOX by 88.97%, reducing the number of floating point operations per

second from 141.90G to 30.87G while achieving an mAP higher than 95%.

Discussion: Our model can accurately and quickly detect fruit tree pest stress in

unstructured orchards and is suitable for transplantation to embedded systems.

This can provide technical support for pest identification and localization systems

for orchard plant protection equipment.
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1 Introduction

As agricultural production continues to expand, fruit tree pests

have become a critical factor limiting fruit tree yield and quality (Li

et al., 2021; Xin and Wang, 2021; Ji and Wu, 2022). Insect pests,

particularly those from the Papilionidae family, are a significant

issue due to their high seasonal incidence, extensive damage, and

potential for causing serious losses in agricultural production

(Trkolu and Hanbay, 2019; Zhan et al., 2021; Toscano-Miranda

et al., 2022; Yu et al., 2022). However, the existing pest identification

models used by orchard plant protection equipment cannot balance

inference rate and accuracy, and fail to meet the demand for pest

detection in unstructured orchard environments. Therefore, it is

crucial to propose an efficient, accurate, and fast pest detection

method for an orchard and agricultural production.

In recent years, scholars worldwide have made significant

progress in researching intelligent detection technology for plant

pests and diseases (Di and Li., 2022). The most commonly used

target detection algorithms are deep learning-based RCNN family

(R-CNN, Fast R-CNN, and Faster R-CNN) and SSD (Single Shot

MultiBox Detector) (Chen et al., 2022; Lamping et al., 2022; Xiao

et al., 2022). Brahimi et al. (2017) classified nine diseases based on

the AlexNet model and reduced labor costs. Srdjan et al. (2016),

Mohanty et al. (2016), and Ferentinos (2018) used the

Convolutional Neural Networks (CNN) model to identify

diseases, achieving good recognition results for more than 50

species. Liu et al. (2017) and Ashqar et al (Ashqar and Abu-

Naser, 2019). used CNN models to identify different diseases on

one plant leaf, promoting plant protection efficiency. Tetila et al.

(2019) first segmented images using the simple linear iterative

clustering (SLIC) method and then used the CNN classification

model to identify soybean leaf pests. Wang et al. (2017) studied the

damage level of apple leaf diseases using CNN and obtained an

accuracy of 90.4%.

The YOLO series are one-step detection algorithms. YOLO was

initially proposed by Redmon et al (Redmon et al., 2016). It

implements region generation and target classification directly,

and divides the feature map in the form of a grid during

prediction, resulting in a dramatic increase in detection speed.

However, the very first YOLO algorithm has some limitations

such as imprecise localization and low detection accuracy (Fu

et al., 2021; Wang and Liu, 2021; Qi et al., 2022). Consequently,

the YOLO series has attracted many researchers’ attention because

of fast inference speed and high precision, and YOLOv4 to YOLOv7

were subsequently introduced (Liu et al., 2022; Roy and Bhaduri,

2022; Ying et al., 2022). Zha et al. (2021) proposed the YOLOv4-mf

model with YOLOv4 as the base network and MobileNetv2 as the

feature extraction block, which improves the detection accuracy of

forest pests. However, the model has issues with high computational

complexity and long processing time when handling large-scale

image data. Liu et al (Liu and Wang, 2020) optimized the feature

layer of the YOLOv3 model with image pyramids to achieve multi-

scale feature detection and improve detection accuracy and speed.

However, in practical applications, the model suffers from

sensitivity to target scales and difficulty in detecting small objects.
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Guo et al. (2022) proposed an automatic monitoring scheme based

on yellow sticky board sampling and YOLO-SIP to achieve rapid

and accurate monitoring of flying pests in vegetables, avoiding

traditional manual sampling. However, optimization of factors

such as the number and placement of sticky traps during

sampling and detection still requires further investigation.

In this study, we use YOLOX as the basic framework, introduce

a lightweight feature extraction network Ghostnet to replace the

backbone network, and design Tanh-Softplus (TS) to replace the

original Sigmoid-Weighted Linear Units (SiLU) activation function.

We combine the efficient channel attention (ECA) mechanism and

adaptive spatial feature fusion (ASFF) to implement model pruning

strategy and candidate frame optimization to achieve

better performance.
2 Materials and methods

2.1 Materials

2.1.1 Image acquisition
Most IPPs host crops such as Phellodendron and Rutaceae’s

citrus (Riaz et al., 2020), making a citrus orchard a representative

choice for image collection. The dataset used in this study was

gathered from an orchard located in Ya’an City, Sichuan Province,

China. The collected data comprised images of Papilionidae pests

taken during different periods (daytime, nighttime, evening, etc.),

under varying lighting conditions (front lighting, backlighting, side

lighting, etc.), and from different shooting angles (front angle, side

angle, oblique side angle, etc.). This ensured that the types of images

corresponded to the actual growth of pests in their natural

environment. A total of 35,000 images with clear target contours

and textures were selected, and a portion of the image dataset is

displayed in Figure 1.

From Figure 1, it is apparent that the fruit trees in unstructured

orchards have lush branches and leaves, with numerous pests being

concealed by leaves, branches, or fruits. The background and

texture details of pests differ under different lighting conditions.

Additionally, the growth of Papilionidae larvae is divided into five

age groups, 1-3 instars (young) and 4-5 instars (old). The

phenotypic characteristics of young and old larvae differ

significantly, as shown in Table 1. Specifically, the body surface of

1-3 instar larvae is brown and resembles bird droppings, while the

body surface of 4-5 instar larvae is green, smooth, and features

odoriferous glandular horns.

2.1.2 Dataset augmentation and preparation
Having a sufficient number of samples is a prerequisite for the

successful application of deep neural networks (DNN). This study

employs batch operations on images in the training set and utilizes

various image processing techniques such as translation, blurring,

affine, rotation, flipping, and splicing to expand the original data by

five times, resulting in 175,000 images. This data augmentation

enriches the dataset and enhances the generality of the detection

model while avoiding overfitting. In this study, we have improved
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the data augmentation methods, using standard techniques to

randomly adjust the contrast and brightness of the images. The

image’s brightness is adjusted by adding or subtracting a certain

factor to its pixel according to equation (1), while the contrast is

changed by randomly multiplying the image pixels by a certain

factor. The merged image can recover some of the color information
Frontiers in Plant Science 03
to improve the feature extraction effect of the model. A portion of

the enhanced images is shown in Figure 2.

exi = xi · w + y (1)

We used the LabelImg tool to label the pest targets in the image,

labeling the young larvae as “young” and the old larvae as “old.” The
TABLE 1 Common Papilionidae larvae.

larva name the backside of old larva side view of the top-aged larva the backside of young larva

Papilio xuthus Linnaeus

Papilio polytes Linnaeus

Papilio protenor amaura Jordan

Papilio demoleus Linnaeus
A B

D E F

G IH

C

FIGURE 1

A portion of the image dataset of IPPs: (A) Blocked by leaf; (B) Blocked by branch; (C) Blocked by fruit; (D) Night photo; (E) Young larva; (F) High
larvae density; (G) Side lighting; (H) Front lighting; (I) Backlighting.
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files generated by labeling are stored in the PASCAL VOC dataset

format. The dataset is randomly divided into a training set, a test set,

and a validation set in the ratio of 7:2:1. In the test set, samples are

categorized as A if the average occlusion of the target is less than

30%, i.e., light occlusion, and as B if they have heavy occlusion. The

distribution of the dataset is shown in Table 2; Figure 3.
2.2 Methods

2.2.1 Network structure of YOLOX
The YOLO series has been widely used in various fields due to

its excellent real-time detection performance. In the YOLO series

and its variants, the mainstream YOLOv3 and YOLOv5 are anchor-

based target detection methods, and the prediction results are

affected by the clustering results of the prior boxes. The extreme

proportion of the prior box affects the detection performance of the

model. YOLOX incorporates the advantages of the early YOLO

series and introduces new techniques to significantly improve

detection performance. A label assignment strategy is introduced

to solve the problem that the detection performance is affected by

the prior box. YOLOX can be divided into S, M, and L versions

based on the network depth and width. Considering the detection

accuracy and speed, YOLOX-x is chosen as the fundamental

network for the IPPs larvae detection task in this study.

The YOLOX network consists of three parts: the backbone,

neck, and head (Ge et al., 2021). As shown in Figure 4, CBS is the

basic convolution in the YOLOX network, which includes Conv,

BN, and SiLU, and is mainly responsible for feature extraction. BN

ensures that the output of each layer and the input data distribution

of the lower layer are consistent, making the model more stable

during training. The SiLU activation function gives the network the

ability to change nonlinearly and abstract features hierarchically in

the deep model. The CSPLayer structure builds a large residual edge
Frontiers in Plant Science 04
while stacking the residual module, which is directly connected to

the end after a small amount of processing and is mainly

responsible for the feature extraction of the detection model.
2.2.2 Lightweight feature extraction network
The Ghost bottleneck created by stacking Ghost modules serves

as the foundation for GhostNet, a compact feature extraction

network. Ghost modules can extract more information with fewer

parameters than conventional convolutions. As illustrated in

Figure 5, a Ghost module generates a real feature layer by

performing standard convolution on the input feature layer,

followed by a linear transformation on each channel of the real

feature layer to create a Ghost feature layer. The Ghost feature layer

is then combined with the real feature layer to create the full output

feature layer. Assuming that the input feature map is h� w � c, the

output feature map is h
0 � w

0 � n, and the convolution kernel size is

k� k, the input feature layer is split into s pieces. The

computational cost of conventional convolution is shown in

equations (2) and (3).

The Ghost bottleneck, which is created by stacking Ghost

modules, forms the basis of GhostNet, a compact feature

extraction network. Compared to traditional convolutions, Ghost

modules can extract more information using fewer parameters. As

shown in Figure 5, a Ghost module generates a real feature layer by

performing standard convolution on the input feature layer,

followed by a linear transformation on each channel of the real
TABLE 2 Detailed distribution of dataset quantity.

dataset number of images

Train set 122500

Validation set 17500

Test set

A 22757

B 12243

A+B 35000
FIGURE 2

A part of the enhanced images.
B
7% A

13%

Test
10%

Training
70%

 Training  Test  A  B  Validation

Validation 
   20%

FIGURE 3

Pie chart of the distribution of IPPs dataset quantity.
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feature layer to create a Ghost feature layer. The Ghost feature layer

is then combined with the real feature layer to create the complete

output feature layer. Assuming the input feature map is h� w � c,

the output feature map is h
0 � w

0 � n, and the convolution kernel

size is k� k, the input feature layer is divided into s pieces.

The computational cost of traditional convolution is described

in formula (2), while the computational cost of the Ghost module is

presented in formula (3).

h
0 � w

0 � n� k� k� c (2)

h
0 � w

0 � n
s
� k� k� c + (s − 1)� h

0 � w
0 � n

s
� k� k (3)

As per formula (3), the Ghost module can be considered as

breaking down the multiplication operation of regular convolution

into two multiplication additions. In comparison to traditional

convolutions, the Ghost module achieves a model compression

rate of approximately s, leading to a substantial decrease in model

computation time.
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2.2.3 Efficient channel attention model
ECA is an adaptive method for choosing the size of a one-

dimensional convolution kernel, which improves upon the SE

(Squeeze and Excitation) strategy by enabling local cross-channel

interactions without dimensionality reduction (Qing and Liu, 2021;

Huang et al., 2022; Zhao et al., 2022). To obtain unreduced features

with a size of H �W � C, ECA first applies global average pooling

(GAP) to the feature map with input size 1� 1� C, as illustrated in

Figure 6. Subsequently, ECA uses a one-dimensional convolution

with a kernel size of k to recover the feature relationship of local k

channels in the 1� 1� C features and enable information

interaction between channels. The input channel number C is

used to adaptively determine the parameter k, as shown in

equation (4),

ECA is an adaptive approach to selecting the size of a one-

dimensional convolution kernel, which improves upon the SE

method by allowing for local cross-channel interactions without

reducing dimensionality. To obtain unreduced features with a size

of H �W � C, ECA initially applies global average pooling (GAP)
FIGURE 4

The network structure of CSP in YOLOX. (The symbol "*" represents multiplication).
FIGURE 5

The schematic diagram of the Ghost module.
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to the feature map with an input size of 1� 1� C, as depicted in

Figure 6. ECA then utilizes a one-dimensional convolution with a

kernel size of k to restore the feature relationship of local k channels

in the 1� 1� C features and enable information interaction

between channels. The input channel number C is employed to

adaptively determine the parameter k, as shown in equation (4):

k = xj jodd=
log2 C + 1

2

���� ����
odd

(4)

where C represents the total number of input channels and

jxjodd represents the odd number closest to x.

2.2.4 Incorporation of adaptive feature
fusion mechanism

The original fusion method used by the YOLOX target

detection network simply resizes the feature maps before adding

them together, which does not fully exploit the features at different

scales (Tang, 2022). In this study, we introduce an adaptive feature

fusion approach to fully leverage the low-level contour, edge, color,

and shape information, as well as the high-level semantic

information of Papilionidae larva images. The structural diagram

of the adaptive feature fusion method is depicted in Figure 7.

The YOLOX neck only outputs level, level2, and level3 feature

maps. However, as shown in Figure 7, the output of the fused ASFF-

3 module is obtained by multiplying the semantic properties of

level, level2, and level3 by the weights of different layers, namely a,
b, and g, respectively. This approach enables the fully adaptive

fusion of features from different levels, resulting in improved target

detection performance.

y1ij = a1
ij � x1!1

ij + b1
ij � x2!1

ij + g 1
ij � x3!1

ij (5)

where, a1
ij , b1

ij , g 1
ij are weights from different layers, x1!1

ij , x2!1
ij ,

x3!1
ij are outputs from different feature maps.
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To combine the outputs of different levels in ASFF-3, it is

critical to first compress level1 and level2 into the same number of

channels using a 1×1 convolution kernel and then upsample them

to match the dimension of level3. This is because the output of

ASFF-3 is a fusion of three parts, and the resulting tensors after

compression and upsampling are denoted as resize_level1 and

resize_level2, respectively. Next, a, b and g are computed by

convolving resize_level1, resize_level2, and level3 with a 1×1

kernel. To ensure that a, b, and g fall within the range of [0, 1],

they are then normalized. The computation process is outlined in

equation (6).

a1
ij =

ea
1
ij

ea
1
ij + eb

1
ij + eg

1
ij

(6)
2.2.5 Soft DIoU_nms to improve the detection
performance of occluded insects

In the prediction stage, blindly removing prediction frames

larger than the threshold in cases of dense overlapping of larvae may

suppress the prediction frames for other Papilionidae larvae and

prevent the detection of occluded overlapping pests. To address this

issue, this article introduces the soft DIoU_nms, which modifies the

intersection over union (IoU) calculation method in the non-

maximum suppression (NMS) algorithm. The IoU computation

process is outlined in equation (7).

IoU =
E ∩ F
E ∪ F

(7)

where F represents one of the remaining prediction boxes, and E

represents the one with the highest current confidence score.

In this work, DIoU is used instead of IoU. As shown in Figure 8,

the blue rectangle E is the bounding box with the highest

confidence, and the yellow rectangle F is one of the other

bounding boxes. The DIoU computation process is outlined in

equation (8).
FIGURE 6

Schematic diagram of ECA mechanism.
FIGURE 7

The schematic diagram of ASFF.
FIGURE 8

The schematic diagram of DIoU. ('E' represents the bounding box
with the highest confidence, 'F' denotes other bounding boxes that
do not have the highest confidence, and 'C' refers to the diagonal
length of the minimum enclosing area comprising boxes 'E' and 'F').
frontiersin.org

https://doi.org/10.3389/fpls.2023.1176300
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2023.1176300
DIoU = IoU � r2(bF , bE)
c2

(8)

where bF is the center of box F, and bE is the center of box E.

r2(bF , bE) represents the square of the distance between the center

of frame E and frame F, and C represents the diagonal length of the

minimum closure area between frame E and frame F.

The distances between bounding box centers are also considered

in DIoU, which is used in this paper instead of IoU to improve

accuracy and filter bounding boxes. When filtering additional

redundant bounding boxes, soft DIoU_nms decreases their

confidence rather than deleting all boxes above the threshold. The

soft DIoU_nms computation process is outlined in equation (8).

Si =
Si,DIoU(M, bi) < Nt

Sie
−
DIoU(M,bi )

2

s ,DIoU(M, bi) ≥ Nt

(
(9)

where Si is the confidence score of the current prediction frame,

M is the prediction frame with the highest confidence among all

prediction boxes, bi represent the ith box in all compared prediction

boxes in the current target, Nt is the set threshold, generally 0.5, s is

the penalty item coefficient.

Soft DIoU_nms selects the prediction box with the highest score

as the reference box, calculates the DIoU with the remaining

prediction boxes within the current target, and retains the

prediction box whose DIoU is below the set threshold. Instead of

setting the boxes with a DIoU greater than the threshold to 0, their

confidence score is gradually reduced. This approach allows some

high-scoring boxes to be considered correct detection boxes in

subsequent calculations. Thus, the use of soft DIoU_nms can

significantly improve the detection performance of occluded

overlapping IPPs, as demonstrated by equation (9).

2.2.6 ASFL-YOLOX network design
Figure 9 illustrates the Ghost ECA (GE) lightweight feature

extraction module that integrates the Ghost Bottleneck and ECA

mechanisms. The Ghost Bottleneck reduces computation and

model parameters, while the ECA mechanism serves as a

lightweight attention mechanism between the Ghost Bottleneck

and Ghost module, improving the detection accuracy of the model

for pests blocked by leaves and branches.

The TS activation function replaces the SiLU function of the

detection head to further improve the performance of the

Papilionidae larvae detection model. The TS activation function is

outlined in equations (10) and (11).

softplus(x) = log (1 + ex) (10)

TS = tanh (x) · softplus(x) (11)
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Figure 10 illustrates the curves of the TS function and other

activation functions. The TS function exhibits smoother

characteristics compared to other functions, which is beneficial

for enhancing the detection model’s performance.

In summary, we present a lightweight detection model, ASFL-

YOLOX, for IPPs by integrating transfer learning, adaptive feature

fusion, and attention guidance to enhance the network based on the

high-performance detector YOLOX-S in this paper. Figure 11

illustrates the network structure of our novel IPPs detection model.

The focus module structure, depicted in (Figure 12A), utilizes a

slicing operation that samples the feature point information at

intervals and stacks it on the channel, which is equivalent to

dividing a high-resolution image into multiple low-resolution

images. This operation avoids the loss of image information while

downsampling the feature image. The spatial pyramid pooling

(SPP) layer, shown in (Figure 12B), addresses the inconsistency in

input image sizes by fusing multiple receptive fields using three

different pooling operations.

2.2.7 Introduction of structured pruning strategy
to compress model

To improve the portability of ASFL-YOLOX, the best-

performing pest detection model was first selected as the base

model. Sparse training was then performed on the network model

to prune unimportant channels, and fine-tuning was used to

recover accuracy. The Batch Normalization (BN) layer was used

to suppress the internal covariate shift, reducing the network

model’s sensitivity to the initial parameter values and effectively

improving the model’s convergence speed. The BN layer can be

mathematically expressed as:

To improve the portability of ASFL-YOLOX, we first selected

the best-performing pest detection model as the base model. Sparse

training was then performed on the network model to prune

unimportant channels, and fine-tuning was used to recover

accuracy. The batch normalization (BN) layer was used to

suppress internal covariate shifts, reducing the network model’s

sensitivity to the initial parameter values and effectively improving

the model ’s convergence speed. The BN layer can be
FIGURE 9

The GE neural network module.

FIGURE 10

Activation function curve comparison diagram.
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mathematically expressed in equation (12).

zout  = g
zin  − mBffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
B + ϵ

p + b (12)

where, zin  and zout  are the input and output data of the BN

layer respectively, B is the current small batch; mB and sB are the
Frontiers in Plant Science 08
mean and standard deviation of the input data of B batches, g and b
are the scaling and translation parameters that can be learned

during the training process, ϵ is a small amount that prevents the

denominator from being zero.

The activation value of each channel is positively correlated

with the learnable parameter g, with channel-level scaling indicating
FIGURE 11

Structure of ASFL-TOLOX for IPPs detection.
A B

FIGURE 12

Structures of two key modules in ASFL-YOLOX: (A) Structure of Focus; (B) Structure of SPP.
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that the parameter size directly affects the importance of the

channel information. Therefore, the parameter g is used as a

quantitative index to measure the importance of the channel, also

known as the scaling factor. Under normal conditions, the

activation values output by the BN layer are normally distributed,

with the majority of them not approaching zero. To facilitate sparse

training and learning, the L1 regular constraint is introduced to

reduce the value of the channel importance quantification index g.
The loss function is outlined in equation (13).

L = Lbaseline  + lo
g∈G

g(g ) (13)

where Lbaseline  is the loss function of the base model, o
g∈G

g(g ) is
the L1 regular constraint element, and g(g ) = │ g │ , l is the

penalty factor used to offset the loss element.

To obtain a highly sparse model with a slight loss of precision,

sparse training requires adjusting the penalty factor and selecting an

appropriate learning rate based on the weight distribution and

average precision of the BN layer. Figure 13 depicts the pruning

process after sparse training of the model.

The scaling factor in the BN layer as a whole tends to zero, and

the channel with the closest g to zero is less important. Based on

this, the scaling factors of all channels are sorted, and an

appropriate pruning ratio is determined. The pruning ratio has

an immediate impact on the model’s volume and accuracy. The

greater the pruning ratio, the more channels are pruned, and the

model becomes smaller, but the model’s accuracy suffers. As a

result, after pruning the model, the accuracy is recovered through

fine-tuning.
2.3 Evaluation indicators

To evaluate the detection performance of ASFL-YOLOX on

IPPs, we introduce seven parameters and their calculations as

equation (14)~(20).

recall =
TP

TP + FN
(14)
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precision =
TP

TP + FP
(15)

F1 =
2� precision� recall
precision + recall

(16)

AP =
Z 1

0
P(R)dR (17)

FLOP   S = 2� H �W(CinK
2 + 1)Cout (18)

Params = Cin  � K2 � Cout  (19)

FPS =
N
T

(20)

where TP represents the number of true positive samples, FP

represents the number of false positive samples, FN represents the

number of false negative samples, and AP is the area enclosed by the

Precision-Recall curve and the coordinate axis, with values ranging

from 0 to 1, H and W represent the width and height of the input

feature map, respectively, K represents the size of the convolution

kernel, Cin and Cout indicate the input and output convolution

kernel sizes, T indicates the total time used to detect all the images,

N is the total number of images.
3 Experimental procedures and
results analysis

3.1 Experiment configuration and
hyperparameter selection

The experimental environment was built on top of the PyTorch

deep learning framework, with GPU-accelerated processing. Table 3

presents the hardware and software configuration of the

experimental computer.

The ASFL-YOLOX network was trained using transfer learning,

with the input image tensors of size (640, 640, 3). To allocate more
FIGURE 13

Schematic diagram of the model pruning process.
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resources to training the second half of the network, we first froze

the backbone network’s pre-training weights and trained the

network for 100 epochs. The following are the main

hyperparameters for this process: batch size was set to 32,

momentum factor was set to 0.93, the initial weight learning rate

was set to 0.001, and decay coefficient was set to 0.0005.

Subsequently, the network was unfrozen and trained for another

100 epochs. The following are the main hyperparameters for this

process: epoch was set to 100, batch size was set to 16, impulse

factor was set to 0.93, the initial learning rate of weight was set to

0.0001, and decay coefficient was set to 0.0005. Therefore, ASFL-

YOLOX was trained for a total of 200 epochs. This training method

has been proven to effectively avoid destroying backbone weights

while also increasing training efficiency.

During the training process, the network’s learning rate was

adjusted using the cosine annealing decay learning rate method, and

the learning rate h can be expressed as shown in equation (21),

where the smoothing label was set to 0.01. Cross mini-batch

normalization (CmBN) regularization was used to update the

network layer weights, and a weight file was stored in the training

set at each epoch.

ht =
1
2
(1 + cos (

tp
T

))h (21)

where t indicates the batch size, and T indicates the

epoch number.

The original model’s weight parameters were used as

initialization weights in the sparse training process, with a penalty

factor of 0.001, a learning rate of 0.0001, a batch size of 16, and 100

iterations. To avoid a significant loss of accuracy, we used a pruning

rate of 65% based on the distribution of scaling factors. After

pruning, we fine-tuned the model to improve its accuracy. The

warm-up learning rate optimization method was used in this

process, with a small learning rate in the early stages of training

to avoid overfitting. The learning rate was gradually reduced as the

number of iterations increased to speed up the model’s

convergence. Finally, when the model’s training was stable, a

smaller learning rate was used to avoid destroying the

model’s stability.

Figure 14 shows the training set loss and validation set loss of

the ASFL-YOLOX model during training. The graph shows that the

ASFL-YOLOX model’s training set loss and validation set loss

change trends are essentially the same. The loss curve gradually
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stabilizes as the training times increase, the model gradually

converges, and the loss decreases very rapidly for the first 20

training times. The loss decreases dramatically when the

backbone is unfrozen in the 100th training session. Like the

previous 100 training times, the model gradually approaches and

converges on the optimal point until the training reaches 190 times.
3.2 Ablation experiment

ASFL-YOLOX enhances the YOLOX-x network with four

evaluation parameters used in the ablation experiment: mAP,

Params, FLOPs, and FPS. The experimental results are displayed

in Table 4.

Table 4 presents that replacing the YOLOX-x backbone

network with GhostNet decreases its mAP, Params, and FLOPs

by approximately 9.17%, 53.94%, and 58.15G, respectively while

increasing its FPS by approximately 21. Incorporating the ECA

mechanism increases the network model’s mAP, Params, and

FLOPs by about 3.51%, 6.16%, and 10.19G, respectively, while the

FPS decreases by about 10. Following the addition of the ASFF

module based on the above, the network model’s mAP, Params, and

FLOPs increase by 2.61%, 4.56%, and 7.25G, respectively, while the

FPS decreases by about 5.

After replacing the SiLU activation function with the TS

function, the network model’s mAP increases by approximately

1.26%, while its Params and FLOPs decrease by 0.21% and 1.02G,

respectively, and its FPS remains unchanged. The network

model’s mAP further increases by about 1.67% after optimizing

the maximum value suppression method, while its parameters,

FLOPs, and FPS remain unchanged. Finally, using the pruning

strategy to compress the network model reduces its mAP,

Params, FLOPs, and FPS by 0.76%, 88.17%, 111.03G, and

50.00%, respectively.

Figure 15 shows that the mAP value of the ASFL-YOLOX

model is slightly lower than the YOLOX-x model’s 96.64%.

However, other indicators of the ASFL-YOLOX model (such as
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FIGURE 14

ASFL-YOLOX loss curve.
TABLE 3 The hardware and software configuration of the
experimental computer.

hardware or software model or version

CPU IntelICoreIi9-10900K

GPU NVIDIA Quadro RTX 5000

OS Windows 10 enterprise 22H2

CUDA CUDA10.0

CUDNN CUDNN7.4.1

PyTorch Pytorch_1.8.1
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Params, FLOPs, and FPS) have significantly improved. Specifically,

the ASFL-YOLOX model utilizes fewer parameters and

computational resources while maintaining a high mAP value and

fast inference speed.
3.3 Comparison of different
attention mechanisms

Through ablation experiments, it is evident that incorporating

an attention mechanism into YOLOX-x can significantly improve
Frontiers in Plant Science 11
the model’s detection accuracy. To further prove that adding ECA

to the YOLOX-x network is more suitable for IPPs detection, an

attention mechanism comparison experiment is designed to

compare the detection performance of the network model by

adding three mainstream attention mechanisms of SE, CBAM,

and ECA, respectively. Table 5 displays the results.

The experiment results show that all three attention

mechanisms can improve YOLOX-x detection accuracy, but at

varying degrees of computational cost. Compared to YOLOX-x,

the mAP, Params, and FLOPs of the “YOLOX-x+SE” model

increased by 0.33%, 6.67M, and 10.26G, respectively, but its FPS
TABLE 4 Ablation experiment results.

methods GhostNet ECA ASFF TS soft DIoU_nms pruning mAP
(%)

Params
(M)

FLOPs
(G) FPS

YOLOX-x × × × × × × 96.64 99.10 141.90 22

improvement 1 √ × × × × × 87.47 45.16 83.75 43

improvement 2 √ √ × × × × 90.98 51.32 94.66 33

improvement 3 √ √ √ × × × 93.59 55.88 101.91 27

improvement 4 √ √ √ √ × × 94.85 55.67 100.89 27

improvement 5 √ √ √ √ √ × 96.52 55.67 100.89 27

our method √ √ √ √ √ √ 95.76 10.93 30.87 66
frontiers
(The symbol "×" indicates that a certain innovation point was not adopted in the ablation experiment, while "√" indicates that a certain innovation point has been adopted in the ablation
experiment).
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FIGURE 15

Assessing model performance via ablation: comparison of four indicators.
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decreased significantly. The “YOLOX-x+CBAM” model’s mAP,

Params, and FLOPs increased by 0.67%, 11.54M, and 13.33G,

respectively. However, the computational cost of this model is

relatively high, and it is not suitable for real-time detection.

When compared to YOLOX-x, the mAP, Params, and FLOPs of

the “YOLOX-x+ECA” model increased by 1.5%, 6.16M, and

10.91G, respectively. It is evident that adding ECA to the

YOLOX-x model achieves a better balance of performance and

computational cost than adding SE and CBAM. And Figure 16

shows the heat map of the detection results of the YOLOX-x model

under the three attention mechanisms generated by the Grad-CAM

++ algorithm.

The heat map clearly shows the area that the network model

pays attention to, and the redder the part of the image, the more

attention the network model pays to that area. When comparing the

generated activation heat maps, it is clear that ECA focuses more

clearly on the body area of the IPPs larvae and can locate the larvae

more accurately.
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3.4 Comparison of classic target
detection models

The ASFL-YOLOX model was compared to other classical models

to validate the superiority of the proposedmethod in this paper, i.e., the

longitudinal comparison experiment. Firstly, the YOLOX-s, YOLOX-

m, YOLOX-l, YOLOX-x, YOLOX-Darknet53, YOLOX-Nano, and

YOLOX-Tiny models were chosen as longitudinal comparison

models, and their performance on the test set was recorded. The

results are shown in Table 6, which indicates that the ASFL-YOLOX

model performed well in all indicators for detecting young larvae. Its

precision, recall, AP, and F1 values were all maintained at higher

thresholds while being time-saving. The mAP value of ASFL-YOLOX

was 95.76%, while YOLOX-nano and YOLOX-tiny only achieved

48.73% and 53.36%, respectively. The model with the highest mAP

value is YOLOX-x, but it requires a large number of parameters and

FLOPs, resulting in a low FPS. The overall performance of the ASFL-

YOLOX model in detecting old larvae remains the best.
TABLE 5 Results of the comparison experiment of different attention mechanisms.

Model mAP (%) Params (M) FLOPs (G) FPS

YOLOX_x 96.64 99.10 141.90 22

YOLOX-x+SE 96.97 105.77 152.16 15

YOLOX-x+CBAM 97.31 110.64 155.23 10

YOLOX-x+ECA 98.14 105.26 152.81 12
frontiers
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FIGURE 16

Heat map of model detection results with different attention mechanisms: (A) original image; (B) YOLOX-x+SE; (C) YOLOX-x+CBAM; (D) YOLOX-x+ECA.
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Next, Faster R-CNN, SSD, YOLOv7, and other models were

chosen as latitude comparison models, trained with the same

training parameters and datasets, and their performance on the

test set was compared. Table 7 displays the results, which show that

while the AP, Precision, and F1 values of ASFL-YOLOX are not the

highest, it is light and fast in inference. ASFL YOLOX’s mAP is

11.84% higher than YOLOv3, and its AP value is 6.92% higher than

YOLOv4. In terms of detection speed, Faster-RCNN has an FPS of

19, which is significantly lower than SSD and YOLO series

networks, indicating its limitations in real-time detection. The

average detection accuracy of YOLOv7-x is 96.98%, but its

detection speed is 37 FPS, which is slower than ASFL-YOLOX.

ASFL-YOLOX has an FPS of 66, which is 29 higher than the FPS of

YOLOv7-x, and its mAP is about 10 percentage points higher than

that of YOLOv7-tiny. Although ASFL-average YOLOX’s accuracy is

slightly lower than that of YOLOv7-x, the latter’s higher complexity

results in slower recognition speed. Therefore, the ASFL-YOLOX

series outperforms the YOLOv7 series in terms of overall

performance and model size.

A comprehensive analysis of Tables 6, 7 enables the creation of

performance and complexity comparison charts for each model, as

depicted in Figures 17, 18, respectively.

Figure 17 illustrates the vertical and horizontal comparison

model performance radar chart, showing that the differences in the

ASFL-YOLOX model indicators are small between young and old

targets, indicating that the model has good robustness. Precision,

Recall, AP, F1, mAP, and other indicators are compared, indicating

that ASFL-YOLOX can improve overall detection performance.

Figure 18 is a comparison chart of vertical and horizontal model

complexity. It compares Params, FLOPs, and FPS indicators,

showing that the ASFL-YOLOX model has smaller Params and

FLOPs than other models, but its FPS is comparable to the YOLOX-

S and YOLOX-Nano models, indicating that ASFL-YOLOX has

advantages in model size and computational efficiency. In
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conclusion, ASFL-YOLOX can improve overall detection

performance while retaining a small model size and high

computational efficiency.
3.5 Real scene detection experiments

3.5.1 Detection under different degrees
of occlusion

In unstructured orchards, branches, and leaves often obstruct or

overlap insects, leading to varying degrees of occlusion. This paper

uses the degree of occlusion as the control variable and the test sets

A, B, and A+B as experimental data to compare the detection results

of the ASFL-YOLOX model and two lightweight models, YOLOX-s

and YOLOv5-s, as shown in Table 8.

The experimental results indicate that the ASFL-YOLOX model

outperforms the YOLOv5-s and YOLOX-s models in terms of

performance indicators (precision, recall, F1, and mAP) on

datasets A, B, and A+B especially for severely occluded data.

Table 8 shows that as the degree of occlusion increases, the

detection performance of each model decreases, but the

performance decrease of ASFL-YOLOX is smaller. The other two

models perform relatively poorly on datasets B and A+B, possibly

due to the increased difficulty of target detection with increasing

occlusion degree. The ASFL-YOLOX model is optimized for

occlusion to better identify occluded targets.

Figure 19 presents the measured results of the three models on

different occlusion test sets. For the light occlusion test set, all three

models successfully detect the pests in the image, but ASFL-YOLOX

exhibits higher confidence. ASFL-YOLOX has a significant

confidence advantage in the heavy occlusion test set. Both

YOLOX and YOLOv5 exhibit varying degrees of missed

detection, with low confidence scores. In summary, ASFL-

YOLOX has a higher detection rate and a confidence score for
TABLE 6 Longitudinal comparison results.

Ours YOLOX-
s

YOLOX-
m

YOLOX-
l

YOLOX-
x

YOLOX-
Darknet53

YOLOX-
Nano

YOLOX-
Tiny

Young

P (%) 95.82 86.33 91.35 94.89 96.89 93.55 47.79 54.11

R (%) 94.74 83.98 88.33 93.97 93.97 91.97 42.66 50.93

AP (%) 95.91 84.21 89.48 94.67 96.67 92.52 46.39 51.24

F1 (%) 95.28 85.14 89.81 94.43 95.41 92.75 45.08 52.47

Old

P (%) 96.94 87.46 92.66 95.81 97.01 94.67 50.03 58.96

R (%) 95.92 85.11 89.53 95.44 96.44 92.90 49.68 54.66

AP (%) 95.61 85.80 90.79 95.04 96.61 94.18 51.07 55.47

F1 (%) 96.43 86.27 91.07 95.62 96.72 93.78 49.85 56.73

Comprehensive
index

mAP (%) 95.76 85.01 90.14 94.86 96.64 93.35 48.73 53.36

Params
(M)

10.93 9.00 25.30 54.20 99.10 63.70 0.91 5.06

FLOPs(G) 30.87 26.75 76.38 95.76 141.90 105.38 1.98 8.45

FPS 66 70 43 31 22 26 128 101
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heavily occluded pests, reducing the missed detection rate of

occluded pests.

3.5.2 Detection under different lighting angles
We conducted tests under front lighting, side lighting, and

backlighting conditions to evaluate the ASFL-YOLOX model’s

robustness under different lighting angles, and the results are

presented in Tables 9, 10.

The precision, recall, F1, and mAP values of the ASFL-YOLOX

model are significantly better than those of the YOLOv5-s and

YOLOX-s models under the three different lighting conditions, as

shown in Tables 9, 10. For instance, when tested with front lighting

data, the ASFL-YOLOX model achieved precision, recall, F1, and

mAP values of 97.93%, 95.51%, 96.70, and 98.07%, respectively,

outperforming the other two models. The same trend was observed

under side-lit and backlit conditions. Thus, the ASFL-YOLOX

model demonstrates superior detection performance and

adaptability to varying lighting conditions. Table 10 illustrates

that under backlighting conditions, the image color and texture

features are lost due to insufficient light, leading to a high-contrast

image. At this point, the YOLOv5 model experiences missed

detection, while the ASFL-YOLOX model still has the

highest confidence.
4 Discussions

This article uses GhostNet (Xu et al., 2023) to replace the

backbone network of YOLOX, which not only stabilizes the average

accuracy but also greatly reduces the number of network

parameters. Table 4 verifies that GhostNet reduces the model

Params by 54.43%, FLOPs by 40.98%, and increases FPS by 21

frames/s; the structured pruning strategy reduces the model Params

by 80.37%, FLOPs by 69.40%, and increases FPS by 39 frames/s;

ASFL-YOLOX reduces the model parameters by 88.97% compared

to YOLOX-x, and FLOPs are compressed from 141.90G to 30.87G.

In Table 7, the inference speed of ASFL-YOLOX is 3.5 times that of

the Faster R-CNN series models, indicating that the Faster R-CNN

series models have greater limitations in terms of inference speed,

and ASFL-YOLOX has obvious advantages. Table 4 verifies that

after using ECA, the model mAP is increased by 3.51%. Figure 16

further proves that ECA is more suitable for application in the

detection task of Papilionidae pests. Zha et al. (2021) proposed a

lightweight pest detection model YOLOv4_MF, which used

Adaptive Spatial Feature Fusion (ASFF) as part of the BA module

to improve the detection accuracy of the model. We draws on Zha’ s

ideas and uses ASFF to connect YOLOX’s decoupled head. Table 4

verifies that ASFF can increase the model mAP by 2.61%. We

innovatively proposes a TS activation function to replace the SiLU

activation function. Figure 10 confirms that the TS activation

function has smoother characteristics, that is, it has better

generalization ability and effective optimization ability. In

addition, this article is based on the Distance-IoU (DIoU) loss

function and combines the advantages of traditional NMS methods

and DIoU_NMS methods to use soft DIoU_NMS algorithms to

optimize the screening of prediction boxes. In Figure 8, soft
T
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DIoU_NMS can more accurately evaluate the overlap degree of

candidate boxes and adjust according to different situations, which

further improves the accuracy and performance of the target

detection model. Table 4 points out that TS and soft DIoU_NM
Frontiers in Plant Science 15
respectively increase the model mAP by 1.26% and 1.67%. Through

multiple measures to improve model accuracy, ASFL-YOLOXs

mAP reached 95.75%, so this article’s improvement measures can

solve the problem of accuracy decline caused by model
A B

DC

FIGURE 17

Radar chart of longitudinal and latitude comparison: (A) Longitudinal comparison-Young; (B) Longitudinal comparison-Old; (C) Latitude comparison-
Young; (D) Latitude comparison-Old.
A B

FIGURE 18

The model complexity is compared in terms of latitude and longitude, where panel (A) presents the results of the longitude comparison and panel
(B) displays the results of the latitude comparison.
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TABLE 8 Comparison of detection results with different occlusion degrees.

model test set R (%) P (%) F1 (%) mAP (%)

YOLOv5-s

A 85.67 90.12 87.84 83.24

B 79.24 87.85 83.32 77.13

A+B 82.16 88.11 85.03 81.22

YOLOX-s

A 86.61 93.25 89.81 91.28

B 80.12 90.10 84.82 84.69

A+B 84.55 86.90 85.70 85.01

ASFL-YOLOX

A 96.54 96.82 96.68 96.83

B 92.75 94.41 93.57 93.14

A+B 95.33 96.38 95.85 95.76
F
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(a1) Confidence=0.86 (a2) missing (a3) missing

(b1) Confidence=0.90 (b2) Confidence=0.78 (b3) missing

(c1) Confidence=0.95 (c2) Confidence=0.91 (c3) Confidence=0.82

A

B

C

FIGURE 19

The detection results of various models under different levels of insect body obstruction are as follows: (A) shows the detection results of YOLOv5,
(B) presents the detection results of YOLOX, and (C) illustrates the detection results of ASFL-YOLOX.
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TABLE 9 Detection results of different lighting angles in the unstructured orchard.

lighting angle model R (%) P (%) F1 (%) mAP (%)

front lighting

YOLOv5_s 87.71 92.65 90.11 85.72

YOLOX_s 88.97 94.41 91.61 93.37

ASFL-YOLOX 95.51 97.93 96.70 98.07

side lighting

YOLOv5_s 82.77 89.21 85.87 81.09

YOLOX_s 84.56 91.11 87.71 90.09

ASFL-YOLOX 94.88 95.98 95.43 96.60

backlighting

YOLOv5_s 77.23 80.12 78.65 75.17

YOLOX_s 80.61 87.11 83.73 84.68

ASFL-YOLOX 91.41 93.04 92.22 93.71
F
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TABLE 10 Detection results of different lighting angles in unstructured orchards.

model front lighting side lighting backlighting

YOLOv5_s

(a1) confidence=0.86 (a2) confidence=0.79 (a3) missing

YOLOX_s

(b1) confidence=0.93 (b2) confidence=0.87 (b3) confidence=0.81

Ours

(c1) confidence=0.97 (c2) confidence=0.96 (c3) confidence=0.90
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lightweighting, although ASFL-YOLOX’s mAP is slightly lower

than YOLOX-x, But ASFL-YOLOX has better overall performance.

Due to the complexity of the orchard environment and the

varying sizes of insects at different growth stages, the model in this

study still has some issues with false detections when detecting pests

in complex backgrounds, and the recognition performance for

“young” insects is inferior to that of “old” insects. In response to

these shortcomings, future expansion of data sets can further

improve the generalization and robustness of models. In

summary, We proposes a neural network model ASFL-YOLOX

that can accurately and quickly identify Papilionidae pests.
5 Conclusions

In this paper, we propose a lightweight real-time detection

method, called ASFL-YOLOX, for the larvae of IPPs. To achieve

network lightweight, we use GhostNet as the backbone network. We

replace the CBS module in the Head with the CBT module, which is

composed of the TS activation function, to further reduce the

model’s memory occupancy. We also introduce the ECA

mechanism at critical positions in the network to suppress

interference from complex backgrounds. Moreover, we use the

soft DIoU_nms algorithm to enhance the recognition capability

of overlapping or occluded pests.

Comparative experimental results of various models show that

the ASFL-YOLOX network’s detection performance is significantly

better than classical target detection models such as Faster-RCNN,

SSD, and YOLOv7 when detecting IPPs in unstructured orchards.

Especially in cases of severe insect occlusion, compared with the

traditional YOLOX network, the ASFL-YOLOX network has a

higher average detection accuracy, a more lightweight model size,

and faster inference speed. This method considers the model size,

inference speed, and detection accuracy, making it more suitable for

deployment on embedded devices and mobile terminals.

Furthermore, this method can be applied to other agricultural

products and positively promotes the development of agricultural

spraying robots.
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