159 research outputs found

    Impact of slickwater fracturing fluid compositions on the petrophysical properties of shale and tightsand

    Get PDF
    A tight reservoir always requires hydraulic fracturing before production to increase production rate. The additives in hydraulic fluids are highly considerable for a successful stimulation. A friction reducer is often used to reduce the flowing friction in the wellbore during hydraulic fracturing. Extensive researches have been conducted to examine the extent it can reduce the fluid friction in tubings; however, no research has been reported on its behavior in a reservoir, which is related to the fracture extension. A breaker is also pumped into the formation to degrade the friction reducer. However, it is not clear that what is the best time to break it. After the hydraulic fracturing, the existence of liquid in matrix reduces the gas phase permeability. A surfactant is added to reduce water block by providing a low surface tension. However, the effect of the surfactant on the petrophysical properties of tight rocks is not clear. In this dissertation, the following four researches have been carried out, and significant findings have been summarized in conclusions. The friction reducer flow behavior in microfractures was studied firstly, including size effect, concentration effect, wettability effect, and etc. Consequently, various additives impact on the petrophysical properties on tight sand was examined, such as surface contact angle, gas phase permeability, liquid imbibition, and gas transportation. Then, formation damage of FR and breaker in tight sand was systematically investigated. The impact factors were disclosed in detail, including fluid concentration, sample length, breaking time, and permeability regain. Finally, surfactant wettability impact on liquid intake in shale was carried out carefully. The liquid intake rate affected by the existence of fractures, fluid concentration, sample length, and treatment method were specified in detail --Abstract, page iii

    High Genetic Diversity and Low Differentiation of Michelia coriacea (Magnoliaceae), a Critically Endangered Endemic in Southeast Yunnan, China

    Get PDF
    Michelia coriacea, a critically endangered tree, has a restricted and fragmented distribution in Southeast Yunnan Province, China. The genetic diversity, genetic structure and gene flow in the three extant populations of this species were detected by 10 inter-simple sequence repeat (ISSR) markers and 11 simple sequence repeat (SSR) markers. Examination of genetic diversity revealed that the species maintained a relatively high level of genetic diversity at the species level (percentage of polymorphic bands) PPB = 96.36% from ISSRs; PPL (percentage of polymorphic loci) = 95.56% from SSRs, despite several fragmental populations. Low levels of genetic differentiation among the populations of M. coriacea were detected by Nei’s Gst = 0.187 for ISSR and Wright’s Fst = 0.090 for SSR markers, which is further confirmed by Bayesian model-based STRUCTURE and PCoA analysis that could not reveal a clear separation between populations, although YKP was differentiated to other two populations by ISSR markers. Meanwhile, AMOVA analysis also indicated that 22.84% and 13.90% of genetic variation existed among populations for ISSRs and SSRs, respectively. The high level of genetic diversity, low genetic differentiation, and the population, structure imply that the fragmented habitat and the isolated population of M. coriacea may be due to recent over-exploitation. Conservation and management of M. coriacea should concentrate on maintaining the high level of genetic variability through both in and ex-situ conservation actions

    Fracturing fluid flow characteristics in shale gas matrix-fracture system based on NMR method

    Get PDF
    To understand the occurrence state of fracturing fluid in shale gas matrix-fracture system, an experimental method for evaluating fracturing fluid flow characteristics in matrix-fracture system was established. By using Nuclear Magnetic Resonance method, the flow characteristics of fracturing fluid were investigated from three processes of filtration, well shut-in and flowback. The T2 spectrum of fracturing fluid flow process and fracturing fluid saturation in matrix-fracture core model were clarified. The results demonstrate that the peak area of T2 spectra increases gradually during the filtration process, and the fracturing fluid quickly fills the fractures and matrix pores. During the well shut-in process, the fracturing fluid gradually flows from the fracture space to the matrix pores, and the signal of the matrix pores increases by 50.5%. During the flowback process, fracturing fluid flows out of the matrix and fracture. And when it reaches a stable state, the peak signal in the fracture decreases by 64.5% and the matrix signal reduces by 18.8%. The better the porosity and permeability characteristics of the core, the more likely the fracturing fluid is to stay in the formation and cannot be discharged. This paper would contribute to basic parameters for shale gas fracturing design and production strategy optimization

    Bedform evolution along a submarine canyon in the South China Sea: New insights from an autonomous underwater vehicle survey

    Get PDF
    Traditional mapping of bedforms in submarine canyons relied on vessel-mounted and towed sensors, but their fine-scale geomorphology and shallow structure requires higher resolution datasets. This study utilizes a high-resolution dataset obtained from an autonomous underwater vehicle, combined with seismic reflection profiles and sediment cores, to analyze bedform sets within a 25.6 km long submarine canyon (canyon C14) in the northern South China Sea. A train of crescent-shaped axial steps, indicative of cyclic steps formed by supercritical turbidity currents, is imaged along the canyon. Axial steps in the upper course show erosional truncations and sub-horizontal reflectors on the lee and stoss sides, respectively, pointing to erosional–depositional cyclic steps formed by confined flows with high erosional capacity. This is facilitated by canyon narrowness and steeper axial gradient. After a transition segment, the lower course widens, with a gentler axial gradient, resulting in increased asymmetry and wavelength of axial steps. Backset bed deposits on the stoss sides of these steps indicate depositional cyclic steps with higher aggradation. Sediment filling, almost padding each cyclic step associated scour suggests the reworking of previously formed bedforms by gravity flows fed by destabilization processes on the canyon sidewalls and upstream lee faces and, possibly, by shelf-edge and uppermost slope spillover into the canyon. At the lowermost course, cyclic steps transition to a furrow field, likely associated to flow velocity reduction facilitated by canyon floor widening and a further decrease in slope gradient. Flow braiding and re-convergence, related to the erosion of fine-grained deposits within the canyon floor, should have played a role to produce furrows under supercritical conditions. This work enhances our understanding of the detailed morphology and shallow relief configuration of bedforms in deep-water submarine canyons, providing insights into their causative processes and evolution

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore