7 research outputs found

    Kirigami‐Structured, Low‐Impedance, and Skin‐Conformal Electronics for Long‐Term Biopotential Monitoring and Human–Machine Interfaces

    No full text
    Abstract Epidermal dry electrodes with high skin‐compliant stretchability, low bioelectric interfacial impedance, and long‐term reliability are crucial for biopotential signal recording and human–machine interaction. However, incorporating these essential characteristics into dry electrodes remains a challenge. Here, a skin‐conformal dry electrode is developed by encapsulating kirigami‐structured poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyvinyl alcohol (PVA)/silver nanowires (Ag NWs) film with ultrathin polyurethane (PU) tape. This Kirigami‐structured PEDOT:PSS/PVA/Ag NWs/PU epidermal electrode exhibits a low sheet resistance (≈3.9 Ω sq−1), large skin‐compliant stretchability (>100%), low interfacial impedance (≈27.41 kΩ at 100 Hz and ≈59.76 kΩ at 10 Hz), and sufficient mechanoelectrical stability. This enhanced performance is attributed to the synergistic effects of ionic/electronic current from PEDOT:PSS/Ag NWs dual conductive network, Kirigami structure, and unique encapsulation. Compared with the existing dry electrodes or standard gel electrodes, the as‐prepared electrodes possess lower interfacial impedance and noise in various conditions (e.g., sweat, wet, and movement), indicating superior water/motion‐interference resistance. Moreover, they can acquire high‐quality biopotential signals even after water rinsing and ultrasonic cleaning. These outstanding advantages enable the Kirigami‐structured PEDOT:PSS/PVA/Ag NWs/PU electrodes to effectively monitor human motions in real‐time and record epidermal biopotential signals, such as electrocardiogram, electromyogram, and electrooculogram under various conditions, and control external electronics, thereby facilitating human–machine interactions

    Tumor-Specific Monomethyl Auristatin E (MMAE) Prodrug Nanoparticles for Safe and Effective Chemotherapy

    No full text
    A prodrug is bioreversible medication that is specifically converted to the active drugs by enzymes overexpressed in the tumor microenvironment, which can considerably reduce the chemotherapy-induced side effects. However, prodrug strategies usually have low antitumor efficacy compared to free drugs by delayed drug release. This is because they need time to be activated by enzymatic cleavage and they also cannot be fully recovered to the active drugs. Therefore, highly potent anticancer drug should be considered to expect a sufficient antitumor efficacy. Herein, we propose tumor-specific monomethyl auristatin E (MMAE) prodrug nanoparticles for safe and effective chemotherapy. The cathepsin B-specific cleavable FRRG peptide and MMAE are chemically conjugated via one-step simple synthetic chemistry. The resulting FRRG-MMAE molecules form stable nanoparticles without any additional carrier materials by hydrophobic interaction-derived aggregations. The FRRG-MMAE nanoparticles efficiently accumulate within the tumor tissues owing to the enhanced permeability and retention (EPR) effect and inhibit the tubulin polymerization by releasing free MMAE in the cathepsin B-overexpressed tumor cells. In contrast, FRRG-MMAE nanoparticles maintain a non-toxic inactive state in the normal tissues owing to innately low cathepsin B expression, thereby reducing MMAE-related severe toxicity. Collectively, this study provides a promising approach for safe and effective chemotherapy via MMAE-based prodrug nanoparticles, which may open new avenues for advanced drug design for translational nanomedicine

    Metastable hexagonal close-packed palladium hydride in liquid cell TEM

    No full text
    Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases. © 2022. The Author(s), under exclusive licence to Springer Nature Limited.11Nsciescopu
    corecore