293 research outputs found

    The Centre for Australian Weather and Climate Research

    Get PDF
    © 2011 CSIRO and the Bureau of Meteorology. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with th

    Neural Pairwise Ranking Factorization Machine for Item Recommendation

    Get PDF
    The factorization machine models attract significant attention from academia and industry because they can model the context information and improve the performance of recommendation. However, traditional factorization machine models generally adopt the point-wise learning method to learn the model parameters as well as only model the linear interactions between features. They fail to capture the complex interactions among features, which degrades the performance of factorization machine models. In this paper, we propose a neural pairwise ranking factorization machine for item recommendation, which integrates the multi-layer perceptual neural networks into the pairwise ranking factorization machine model. Specifically, to capture the high-order and nonlinear interactions among features, we stack a multi-layer perceptual neural network over the bi-interaction layer, which encodes the second-order interactions between features. Moreover, the pair-wise ranking model is adopted to learn the relative preferences of users rather than predict the absolute scores. Experimental results on real world datasets show that our proposed neural pairwise ranking factorization machine outperforms the traditional factorization machine models

    Hyperbolic Personalized Tag Recommendation

    Get PDF

    Enhanced factorization machine via neural pairwise ranking and attention networks

    Get PDF
    The factorization machine models attract significant attention nowadays since they improve recommendation performance by incorporating context information into recommendation modeling. However, traditional factorization machine models often adopt the point-wise learning method for model parameter learning, as well as only model the linear interactions between features. They substantially fail to capture the complex interactions among features, which degrades the performance of factorization machine models. In this research, we propose a neural pairwise ranking factorization machine for item recommendation, namely NPRFM, which integrates the multi-layer perceptual neural networks into the pairwise ranking factorization machine model. Specifically, to capture the high-order and nonlinear interactions among features, we stack a multi-layer perceptual neural network over the bi-interaction layer, which encodes the second-order interactions between features. Moreover, instead of the prediction of the absolute scores, the pair-wise ranking model is adopted to learn the relative preferences of users. Since NPRFM does not take into account the importance of feature interactions, we propose a new variant of NPRFM, which learns the importance of feature interactions by introducing the attention mechanism. The empirical results on real-world datasets indicate that the proposed neural pairwise ranking factorization machine outperforms the traditional factorization machine models

    Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    Get PDF
    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have been analyze

    Role of purinergic signalling in obesity-associated end-organ damage: focus on the effects of natural plant extracts

    Get PDF
    Obesity has become one of the major public health problems in both the developing and developed countries. Recent studies have suggested that the purinergic signalling is involved in obesity-associated end-organ damage through purine P1 and P2 receptors. In the search for new components for the treatments of obesity, we and other researchers have found much evidence that natural plant extracts may be promising novel therapeutic approaches by modulating purinergic signalling. In this review, we summarize a critical role of purinergic signalling in modulating obesity-associated end-organ damage, such as overhigh appetite, myocardial ischemia, inflammation, atherosclerosis, non-alcoholic fatty liver disease (NAFLD), hepatic steatosis and renal inflammation. Moreover, we focus on the potential roles of several natural plant extracts, including quercetin, resveratrol/trans-resveratrol, caffeine, evodiamine and puerarin, in alleviating obesity-associated end-organ damage via purinergic signalling. We hope that the current knowledge of the potential roles of natural plant extracts in regulating purinergic signalling would provide new ideas for the treatment of obesity and obesity-associated end-organ damage

    Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation

    Get PDF
    A better understanding of functional changes in the cerebral microvasculature following ischemic injury is essential to elucidate the pathogenesis of stroke. Up to now, the simultaneous depiction and stereological analysis of 3D micro-architectural changes of brain vasculature with network disorders remains a technical challenge. We aimed to explore the three dimensional (3D) microstructural changes of microvasculature in the rat brain on 4, 6 hours, 3 and 18 days post-ischemia using synchrotron radiation micro-computed tomography (SRμCT) with a per pixel size of 5.2 μm. The plasticity of angioarchitecture was distinctly visualized. Quantitative assessments of time-related trends after focal ischemia, including number of branches, number of nodes, and frequency distribution of vessel diameter, reached a peak at 6 h and significantly decreased at 3 days and initiated to form cavities. The detected pathological changes were also proven by histological tests. We depicted a novel methodology for the 3D analysis of vascular repair in ischemic injury, both qualitatively and quantitatively. Cerebral angioarchitecture sustained 3D remodeling and modification during the healing process. The results might provide a deeper insight into the compensatory mechanisms of microvasculature after injury, suggesting that SRμCT is able to provide a potential new platform for deepening imaging pathological changes in complicated angioarchitecture and evaluating potential therapeutic targets for stroke

    The existence of global weak solutions for a weakly dissipative Camassa-Holm equation in H1(R)

    Get PDF
    The existence of global weak solutions to the Cauchy problem for a weakly dissipative Camassa-Holm equation is established in the space C([0,∞)×R)nL∞([0,∞);H1(R)) under the assumption that the initial value u 0 (x) only belongs to the space H 1 (R) . The limit of viscous approximations, a one-sided super bound estimate and a space-time higher-norm estimate for the equation are established to prove the existence of the global weak solution
    • …
    corecore