59 research outputs found

    Exposing Engineering Students To Renewable Energy Through Hands-On Experiments

    Get PDF
    Renewable energy is the most rapidly growing discipline in today’s business world and is commonly viewed as the main arena for research and development in various fields. This article summarizes the work and efforts of an educational project conducted at Prairie View A&M University (PVAMU). A major goal of the project was to design renewable energy laboratories and expose engineering students to clean energy technologies. Through this project, the investigators engaged students in renewable energy applications through hands-on experiments, encouraged interdisciplinary collaboration, and better prepared students to enter the energy workforce. Meanwhile, the project also benefited engineering educators by exploring effective teaching methods in energy education.

    Improved Thermoelectric Performance of (Fe,Co)Sb\u3csub\u3e3\u3c/sub\u3e-Type Skutterudites from First-Principles

    Get PDF
    Skutterudite materials have been considered as promising thermoelectric candidates due to intrinsically good electrical conductivity and tailorable thermal conductivity. Options for improving thermal-to-electrical conversion efficiency include identifying novel materials, adding filler atoms, and substitutional dopants. Incorporating filler or substitutional dopant atoms in the skutterudite compounds can enhance phonon scattering, resulting in reduction of thermal conductivity, as well as improving electrical conductivity. The structures, electronic properties, and thermal properties of double-filled Ca0.5Ce0.5Fe4Sb12 and Co4Sb12-2xTexGex compounds (x = 0, 0.5, 1, 2, 3, and 6) have been studied using density functional theory-based calculations. Both Ca/Ce filler atoms in FeSb3 and Te/Ge substitution in CoSb3 cause a decrease in lattice constant for the compounds. As Te/Ge substitution concentration increase, lattice constant decreases and structural distortion of pnictogen rings in the compounds occurs. This indicates a break in cubic symmetry of the structure. The presence of fillers and substitutions cause an increase in electrical conductivity and a gradual decrease in electronic band gap. A transition from direct to indirect band-gap semiconducting behavior is found at x=3. Phonon density of states for both compounds indicate phonon band broadening by the incorporation of fillers and substitutional atoms. Both systems are also assumed to have acoustic-mode-dominated lattice thermal conductivity. For the Co4Sb12-xTexGex compounds, x=3 has the lowest phonon dispersion gradient and lattice thermal conductivity, agreeing well with experimental measurements. Our results exhibit the improvement of thermoelectric properties of skutterudite compounds through fillers and substitutional doping

    Roles of phosphotase 2A in nociceptive signal processing

    Get PDF
    Abstract Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules

    Multi‐Scale Microstructural Thermoelectric Materials: Transport Behavior, Non‐Equilibrium Preparation, and Applications

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/1/adma201602013_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/2/adma201602013.pd

    Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites

    Full text link
    The applications of mixed ionic–electronic conductors are limited due to phase instability under a high direct current and large temperature difference. Here, it is shown that Cu2Se is stabilized through regulating the behaviors of Cu+ ions and electrons in a Schottky heterojunction between the Cu2Se host matrix and in‐situ‐formed BiCuSeO nanoparticles. The accumulation of Cu+ ions via an ionic capacitive effect at the Schottky junction under the direct current modifies the space‐charge distribution in the electric double layer, which blocks the long‐range migration of Cu+ and produces a drastic reduction of Cu+ ion migration by nearly two orders of magnitude. Moreover, this heterojunction impedes electrons transferring from BiCuSeO to Cu2Se, obstructing the reduction reaction of Cu+ into Cu metal at the interface and hence stabilizes the β‐Cu2Se phase. Furthermore, incorporation of BiCuSeO in Cu2Se optimizes the carrier concentration and intensifies phonon scattering, contributing to the peak figure of merit ZT value of ≈2.7 at 973 K and high average ZT value of ≈1.5 between 400 and 973 K for the Cu2Se/BiCuSeO composites. This discovery provides a new avenue for stabilizing mixed ionic–electronic conduction thermoelectrics, and gives fresh insights into controlling ion migration in these ionic‐transport‐dominated materials.The space‐charge region between Cu2Se host matrix and in‐situ‐formed BiCuSeO under a direct current causes drastic suppression of the Cu+ ion migration in such composites and obstructs the reduction reaction of Cu+ into Cu metal. This, together with the effective regulation of carrier concentration as well as enhanced interfacial phonon scattering, greatly stabilizes the improved thermoelectric performance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/2/adma202003730-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/3/adma202003730_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/1/adma202003730.pd

    PERK-Mediated Cholesterol Excretion from IDH Mutant Glioma Determines Anti-Tumoral Polarization of Microglia

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation, a known pathologic classifier, initiates metabolic reprogramming in glioma cells and has been linked to the reaction status of glioma-associated microglia/macrophages (GAMs). However, it remains unclear how IDH genotypes contribute to GAM phenotypes. Here, it is demonstrated that gliomas expressing mutant IDH determine M1-like polarization of GAMs, while archetypal IDH induces M2-like polarization. Intriguingly, IDH-mutant gliomas secrete excess cholesterol, resulting in cholesterol-rich, pro-inflammatory GAMs without altering their cholesterol biosynthesis, and simultaneously exhibiting low levels of tumoral cholesterol due to expression remodeling of cholesterol transport molecules, particularly upregulation of ABCA1 and downregulation of LDLR. Mechanistically, a miR-19a/LDLR axis-mediated novel post-transcriptional regulation of cholesterol uptake is identified, modulated by IDH mutation, and influencing tumor cell proliferation and invasion. IDH mutation-induced PERK activation enhances cholesterol export from glioma cells via the miR-19a/LDLR axis and ABCA1/APOE upregulation. Further, a synthetic PERK activator, CCT020312 is introduced, which markedly stimulates cholesterol efflux from IDH wild-type glioma cells, induces M1-like polarization of GAMs, and consequently suppresses glioma cell invasion. The findings reveal an essential role of the PERK/miR-19a/LDLR signaling pathway in orchestrating gliomal cholesterol transport and the subsequent phenotypes of GAMs, thereby highlighting a novel potential target pathway for glioma therapy

    Experimental and Numerical Study on the Mechanical Performance of Ultra-High-Performance Concrete T-Section Beams

    No full text
    Aiming to investigate the mechanical performance of UHPC T-section beams, five specimens are fabricated and tested, considering the variable steel fiber volume fraction (SFVF). The code of the Association Francaise de Génie Civil (AFGC) is evaluated by test data. Additionally, based on Abaqus (2020), refined finite element analysis (FEA) models of specimens are established and validated by experimental data. Moreover, the parametric sensitivity analysis is carried out, which aims to further investigate the effect of shear span ratio, longitude reinforcement ratio, and stirrup ratio on the bending-shear behavior of T-section beams. The test results indicated that the ultimate load of the specimen improves with the increase of SFVF, and the use of steel fibers can greatly improve the shear capacity instead of the bending capacity. Furthermore, SFVF can change the failure mode; the specimens fail in shear failure when SFVF ρsv has a significant effect on the shear performance of structures with SFVF ≤ 1%, while it has less effect with SFVF ≥ 2%

    Recent development in two-dimensional material-based membranes for redox flow battery

    No full text
    Funding Information: This work was supported by the National Natural Science Foundation of China (Grant no. 21636007 ), the Start-up Foundation offered by Ningbo University of Technology to J.S. Yuan, and the Start-up Package of T10108 Professorship offered by Aalto University to Y.D. Li. Publisher Copyright: © 2022 Elsevier LtdRedox flow battery (RFB) has been widely considered to be one of the most promising grid-scale energy-storage technology. The membrane, namely separator, serves as preventing the crossover of the positive and negative active species, while facilitating the transport of the supporting electrolyte ions, is crucial to achieve a high performance and a long-term stability for an RFB. Advances in RFBs require high-performance and low-cost membranes with high ion-selective transport for the application of large-scale energy storage. Two-dimensional (2D) materials have emerged as promising functional materials owing to their atomic-scale thickness and unique physical/chemical properties, which have great potential in the application of RFB membrane. Focusing on the recent state-of-the-art of 2D materials, in this mini review, various 2D materials applied in the membrane for RFB are briefly introduced. A perspective on the near-future developments of 2D materials in RFB membranes is presented.Peer reviewe

    Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries

    No full text
    Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 degrees C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery
    corecore