8 research outputs found

    Correction: Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures

    Get PDF
    Correction for ‘Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures’ by Kris Anderson et al., Green Chem., 2015, DOI: 10.1039/c5gc00720h

    Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures

    Full text link
    [EN] Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to synergistic chemical and physical absorption. The formulated ionic liquid/water mixtures show greatly enhanced carbon dioxide solubility relative to both anhydrous ionic liquids and aqueous ionic liquid solutions, and are competitive with commercial chemical absorbers, such as activated N-methyldiethanolamine or monoethanolamine.The authors would like to acknowledge PETRONAS for financial support of this research, and Cytec (especially Dr Al Robertson) for supplying some of the phosphonium ionic liquids used.Anderson, K.; Atkins, MP.; Estager, J.; Kuah, Y.; Ng, S.; Oliferenko, AA.; Plechkova, NV.... (2015). Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures. Green Chemistry. 17(8):4340-4354. https://doi.org/10.1039/c5gc00720hS43404354178Cenovus, http://www.cenovus.com/operations/technology/co2-enhanced-oil-recovery.htmlV. Alvarado and E.Manrique, Enhanced Oil Recovery: Field Planning and Development Strategies, Gulf Professional Publishing, Amsterdam, 2010British Petroleum , In Salah Gas, http://www.insalahco2.com/index.php?option=com_content&view=frontpage&Itemid=1&lang=enN. Stern , The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge, 2007Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies, 3(9), 1529-1575. doi:10.3390/en3091529S. Rackley , Carbon Capture and Storage, Elsevier Science, Oxford, 2009H. Huppert , Carbon Capture and Storage in Europe EASAC Policy Report 20, German National Academy of Sciences, Leopoldina, 2013Organisation for the Prohibition of Chemical Weapons (OPCW) , The Chemical Weapons Convention, http://www.opcw.org/html/db/cwc/eng/cwc_frameset.htmlRubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630-671. doi:10.1016/j.pecs.2012.03.003G. H. Koch , M. P. H.Brongers, N. G.Thompson, Y. P.Virmani and J. H.Payer, Corrosion Costs and Preventive Strategies in the United States FHWA-RD-01-156, CC Technologies Laboratories, Inc, NACE International, 2001Law Offices of Casper Meadows Schwartz & Cook, ‘$80 Million Recovery in Toxic Exposure Suit’, http://www.cmslaw.com/Verdicts-Settlements/80-Million-Recovery-in-Toxic-Exposure-Suit.shtmlL. Grunwald , U.S. EPA Cites UNOCAL for Spill Violations, Press Release, United States Environmental Protection Agency, 1995Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795yDu, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO2separations. Energy Environ. Sci., 5(6), 7306-7322. doi:10.1039/c1ee02668bM. Freemantle , An Introduction to Ionic Liquids, RSC Publications, Cambridge, UK, 2010Earle, M. J., Esperança, J. M. S. S., Gilea, M. A., Canongia Lopes, J. N., Rebelo, L. P. N., Magee, J. W., … Widegren, J. A. (2006). The distillation and volatility of ionic liquids. Nature, 439(7078), 831-834. doi:10.1038/nature04451Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R., & Birbilis, N. (2006). An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 9(11), B52. doi:10.1149/1.2344826Fraser, K. J., & MacFarlane, D. R. (2009). Phosphonium-Based Ionic Liquids: An Overview. Australian Journal of Chemistry, 62(4), 309. doi:10.1071/ch08558K. R. Seddon , Ionic liquids: Designer solvents?, in The International George Papatheodorou Symposium: Proceedings, ed. S. Boghosian, V. Dracopoulos, C. G. Kontoyannis and G. A. Voyiatzis, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999, pp. 131–135M. Deetlefs , M.Fanselow and K. R.Seddon, RSC Adv.W. Freyland , Coulombic Fluids: Bulk and Interfaces, Springer, Heidelberg, 2011Electrodeposition from Ionic Liquids, ed. F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH, Weinheim, 2008Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, New Jersey, 2005Ionic Liquids: From Knowledge to Application, ed. N. V. Plechkova, R. D. Rogers and K. R. Seddon, American Chemical Society, Washington D.C., 2009Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677jIonic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013Ionic Liquids Further UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2014Ionic Liquids Completely UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2015Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887C. Villagrán , C. E.Banks, M.Deetlefs, G.Driver, W. R.Pitner, R. G.Compton and C.Hardacre, Chloride Determination in Ionic Liquids, in Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities - Transformations and Processes, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser., Vol. 902, American Chemical Society, Washington D.C., 2005, vol. 902, pp. 244–258J. L. Anthony , E. J.Maginn and J. F.Brennecke, Gas Solubilities in 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 260–269J. H. Davis Jr. , Working Salts: Syntheses and Uses of Ionic Liquids Containing Functionalized Ions, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 247–259Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2Capture by a Task-Specific Ionic Liquid. Journal of the American Chemical Society, 124(6), 926-927. doi:10.1021/ja017593dWang, C., Luo, X., Zhu, X., Cui, G., Jiang, D., Deng, D., … Dai, S. (2013). The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 3(36), 15518. doi:10.1039/c3ra42366bRamdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-Art of CO2Capture with Ionic Liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. doi:10.1021/ie3003705Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., & Huang, Y. (2012). Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science, 5(5), 6668. doi:10.1039/c2ee21152aYokozeki, A., & Shiflett, M. B. (2009). Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N]. Energy & Fuels, 23(9), 4701-4708. doi:10.1021/ef900649cCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2012). Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. The Journal of Physical Chemistry A, 116(6), 1605-1620. doi:10.1021/jp211211nCarvalho, P. J., Álvarez, V. H., Schröder, B., Gil, A. M., Marrucho, I. M., Aznar, M., … Coutinho, J. A. P. (2009). Specific Solvation Interactions of CO2on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. The Journal of Physical Chemistry B, 113(19), 6803-6812. doi:10.1021/jp901275bGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide. Industrial & Engineering Chemistry Research, 50(1), 111-118. doi:10.1021/ie101688aGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Lopez, Z. K., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Effect of Water and Temperature on Absorption of CO2by Amine-Functionalized Anion-Tethered Ionic Liquids. The Journal of Physical Chemistry B, 115(29), 9140-9150. doi:10.1021/jp2015534Ferguson, J. L., Holbrey, J. D., Ng, S., Plechkova, N. V., Seddon, K. R., Tomaszowska, A. A., & Wassell, D. F. (2011). A greener, halide-free approach to ionic liquid synthesis. Pure and Applied Chemistry, 84(3), 723-744. doi:10.1351/pac-con-11-07-21Shiflett, M. B., Kasprzak, D. J., Junk, C. P., & Yokozeki, A. (2008). Phase behavior of {carbon dioxide+[bmim][Ac]} mixtures. The Journal of Chemical Thermodynamics, 40(1), 25-31. doi:10.1016/j.jct.2007.06.003Shiflett, M. B., & Yokozeki, A. (2009). Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures. Journal of Chemical & Engineering Data, 54(1), 108-114. doi:10.1021/je800701jShiflett, M. B., Drew, D. W., Cantini, R. A., & Yokozeki, A. (2010). Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy & Fuels, 24(10), 5781-5789. doi:10.1021/ef100868aCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2011). Solubility of CO2in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations. The Journal of Physical Chemistry B, 115(13), 3538-3550. doi:10.1021/jp111453aGurau, G., Rodríguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., & Rogers, R. D. (2011). Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie International Edition, 50(50), 12024-12026. doi:10.1002/anie.201105198Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., … Danten, Y. (2012). CO2 in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. The Journal of Physical Chemistry A, 116(20), 4890-4901. doi:10.1021/jp211689zJaniczek, P., Kalb, R. S., Thonhauser, G., & Gamse, T. (2012). Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Separation and Purification Technology, 97, 20-25. doi:10.1016/j.seppur.2012.03.003Ober, C. A., & Gupta, R. B. (2012). pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 51(6), 2524-2530. doi:10.1021/ie201529dStevanovic, S., Podgoršek, A., Pádua, A. A. H., & Costa Gomes, M. F. (2012). Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. The Journal of Physical Chemistry B, 116(49), 14416-14425. doi:10.1021/jp3100377Stevanovic, S., Podgorsek, A., Moura, L., Santini, C. C., Padua, A. A. H., & Costa Gomes, M. F. (2013). Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control, 17, 78-88. doi:10.1016/j.ijggc.2013.04.017Wang, G., Hou, W., Xiao, F., Geng, J., Wu, Y., & Zhang, Z. (2011). Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2Absorption. Journal of Chemical & Engineering Data, 56(4), 1125-1133. doi:10.1021/je101014qWilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003Miyano, Y., & Fujihara, I. (2004). Henry’s constants of carbon dioxide in methanol at 250–500 K. Fluid Phase Equilibria, 221(1-2), 57-62. doi:10.1016/j.fluid.2004.04.017Fernandez, E. S., & Goetheer, E. L. V. (2011). DECAB: Process development of a phase change absorption process. Energy Procedia, 4, 868-875. doi:10.1016/j.egypro.2011.01.131Zhang, J., Zhang, S., Dong, K., Zhang, Y., Shen, Y., & Lv, X. (2006). Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry - A European Journal, 12(15), 4021-4026. doi:10.1002/chem.200501015Saravanamurugan, S., Kunov-Kruse, A. J., Fehrmann, R., & Riisager, A. (2014). Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2. ChemSusChem, 7(3), 897-902. doi:10.1002/cssc.201300691J. Speight , Lange's Handbook of Chemistry, McGraw-Hill, New York, 16th edn, 2005, Section 1.18, pp. 1.310–1.314Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900dNitta, I., Tomiie, Y., & Koo, C. H. (1952). The crystal structure of potassium bicarbonate, KHCO3. Acta Crystallographica, 5(2), 292-292. doi:10.1107/s0365110x52000848Sass, R. L., & Scheuerman, R. F. (1962). The crystal structure of sodium bicarbonate. Acta Crystallographica, 15(1), 77-81. doi:10.1107/s0365110x62000158Adamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gGottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry, 62(21), 7512-7515. doi:10.1021/jo971176vSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895Ramnial, T., Taylor, S. A., Bender, M. L., Gorodetsky, B., Lee, P. T. K., Dickie, D. A., … Clyburne, J. A. C. (2008). Carbon-Centered Strong Bases in Phosphonium Ionic Liquids. The Journal of Organic Chemistry, 73(3), 801-812. doi:10.1021/jo701289dDietzel, P. D. C., & Jansen, M. (2002). Tetramethylphosphonium hydrogen carbonate. Acta Crystallographica Section E Structure Reports Online, 58(9), o1003-o1004. doi:10.1107/s1600536802013168Li, H., Hou, Y., & Yang, Y. (2011). Tetraethylammonium bicarbonate trihydrate. Acta Crystallographica Section E Structure Reports Online, 67(8), o1991-o1991. doi:10.1107/s1600536811026080McMullan, R., & Jeffrey, G. A. (1959). Hydrates of the Tetran‐butyl and Tetrai‐amyl Quaternary Ammonium Salts. The Journal of Chemical Physics, 31(5), 1231-1234. doi:10.1063/1.1730574Smiglak, M., Hines, C. C., & Rogers, R. D. (2010). New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 12(3), 491. doi:10.1039/b920003gMaton, C., Van Hecke, K., & Stevens, C. V. (2015). Peralkylated imidazolium carbonate ionic liquids: synthesis using dimethyl carbonate, reactivity and structure. New Journal of Chemistry, 39(1), 461-468. doi:10.1039/c4nj01301hBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hAdamová, G., Canongia Lopes, J. N., Rebelo, L. P. N., Santos, L. M. N. B., Seddon, K. R., & Shimizu, K. (2014). The alternation effect in ionic liquid homologous series. Phys. Chem. Chem. Phys., 16(9), 4033-4038. doi:10.1039/c3cp54584aAdamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gM. B. Shiflett and A.Yokozeki, Phase Behaviour of Gases in Ionic Liquids, in Ionic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013, pp. 349–398Ibrahim, A. Y., Ashour, F. H., Ghallab, A. O., & Ali, M. (2014). Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. Journal of Natural Gas Science and Engineering, 21, 894-899. doi:10.1016/j.jngse.2014.10.011Anonymous , Piperazine – Why It's Used And How It Works, The Contractor (Optimized Gas Treating, Inc.), Houston, 2008, 2 [4], http://www.ogtrt.com/files/contactors/vol_2_issue_4.pd

    Ionic liquids and salts for contaminant removal in the petroleum industry

    No full text
    This thesis, separated into Parts A and B, is a combination of work on two projects with overlapping themes. Both projects aimed to design an ionic liquid, or a salt system, to remove deleterious contaminants in the petroleum industry in a green and sustainable manner. In Part A, systematic studies have been conducted to design various salt systems that extract mercury via oxidative complexation, from natural gas and liquid hydrocarbon streams. These compounds were characterised using a wide range of analytical techniques. In the mercury extraction from the gas phase, a remarkable discovery of a custom-designed ionic liquid has led to the successful development of a commercial mercury scrubber (containing 15 tonnes of catalyst) at a PETRONAS Gas Processing Plant in Malaysia. In addition, cheaper binary inorganic systems have also been investigated. These were initially prepared as benchmarks to the ionic liquid systems, but have proved to be effective in their own right. This has (led to the development of a second generation of mercury scrubber, currently. under pilot scale evaluation. For mercury extraction from liquid hydrocarbons, again, two of the systems examined, namely the ionic liquids and binary inorganic salt systems, showed significant activity, and these systems are also currently under pilot scale evaluation. [n Part B, the aim was to develop a novel approach to remove C02 from natural gas streams using ionic liquids. Various ionic liquids were synthesised and characterised using various analytical techniques. Remarkably, these novel systems were found to absorb up to 1.5 mol CO2 per mol of ionic liquid, exceeding the best literature value of equimolar capacity, making them very attractive for further pilot scale testing.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore