171 research outputs found

    RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus Fumigatus

    Get PDF
    SREBP transcription factors play a critical role in fungal virulence; however, the mechanisms of sterol regulatory element binding protein (SREBP) activation in pathogenic fungi remains ill-defined. Screening of the Neurospora crassa whole-genome deletion collection for genes involved in hypoxia responses identified a gene for an uncharacterized rhomboid protease homolog, rbdB, required for growth under hypoxic conditions. Loss of rbdB in Aspergillus fumigatus also inhibited growth under hypoxic conditions. In addition, the A. fumigatus ΔrbdB strain also displayed phenotypes consistent with defective SREBP activity, including increased azole drug susceptibility, reduced siderophore production, and full loss of virulence. Expression of the basic helix-loop-helix (bHLH) DNA binding domain of the SREBP SrbA in ΔrbdB restored all of the phenotypes linking RdbB activity with SrbA function. Furthermore, the N-terminal domain of SrbA containing the bHLH DNA binding region was absent from ΔrbdB under inducing conditions, suggesting that RbdB regulates the protein levels of this important transcription factor. As SrbA controls clinically relevant aspects of fungal pathobiology in A. fumigatus, understanding the mechanisms of SrbA activation provides opportunities to target this pathway for therapeutic development

    Nutrient and Stress Sensing in Pathogenic Yeasts

    Get PDF
    More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed

    Sho1 and Msb2 Play Complementary but Distinct Roles in Stress Responses, Sexual Differentiation, and Pathogenicity of Cryptococcus neoformans

    Get PDF
    The high-osmolarity glycerol response (HOG) pathway is pivotal in environmental stress response, differentiation, and virulence of Cryptococcus neoformans, which causes fatal meningoencephalitis. A putative membrane sensor protein, Sho1, has been postulated to regulate HOG pathway, but its regulatory mechanism remains elusive. In this study, we characterized the function of Sho1 with relation to the HOG pathway in C. neoformans. Sho1 played minor roles in osmoresistance, thermotolerance, and maintenance of membrane integrity mainly in a HOG-independent manner. However, it was dispensable for cryostress resistance, primarily mediated through the HOG pathway. A mucinlike transmembrane (TM) protein, Msb2, which interacts with Sho1 in Saccharomyces cerevisiae, was identified in C. neoformans, but found not to interact with Sho1. MSB2 codeletion with SHO1 further decreased osmoresistance and membrane integrity, but not thermotolerance, of sho1Δ mutant, indicating that both factors play to some level redundant but also discrete roles in C. neoformans. Sho1 and Msb2 played redundant roles in promoting the filamentous growth in sexual differentiation in a Cpk1-independent manner, in contrast to the inhibitory effect of the HOG pathway in the process. Both factors also played redundant roles in maintaining cell wall integrity in the absence of Mpk1. Finally, Sho1 and Msb2 play distinct but complementary roles in the pulmonary virulence of C. neoformans. Overall, Sho1 and Msb2 play complementary but distinct roles in stress response, differentiation, and pathogenicity of C. neoformans

    Hrk1 Plays Both Hog1-Dependent and -Independent Roles in Controlling Stress Response and Antifungal Drug Resistance in Cryptococcus neoformans

    Get PDF
    The HOG (High Osmolarity Glycerol response) pathway plays a central role in controlling stress response, ergosterol biosynthesis, virulence factor production, and differentiation of Cryptococcus neoformans, which causes fatal fungal meningoencephalitis. Recent transcriptome analysis of the HOG pathway discovered a Hog1-regulated gene (CNAG_00130.2), encoding a putative protein kinase orthologous to Rck1/2 in Saccharomyces cerevisiae and Srk1 in Schizosaccharomyces pombe. Its function is not known in C. neoformans. The present study functionally characterized the role of Hrk1 in C. neoformans. Northern blot analysis confirmed that HRK1 expression depends on the Hog1 MAPK. Similar to the hog1Δ mutant, the hrk1Δ mutant exhibited almost complete resistance to fludioxonil, which triggers glycerol biosynthesis via the HOG pathway. Supporting this, the hrk1Δ mutant showed reduced intracellular glycerol accumulation and swollen cell morphology in response to fludioxonil, further suggesting that Hrk1 works downstream of the HOG pathway. However, Hrk1 also appeared to have Hog1-independent functions. Mutation of HRK1 not only further increased osmosensitivity of the hog1Δ mutant, but also suppressed increased azole-resistance of the hog1Δ mutant in an Erg11-independent manner. Furthermore, unlike the hog1Δ mutant, Hrk1 was not involved in capsule biosynthesis. Hrk1 was slightly involved in melanin production but dispensable for virulence of C. neoformans. These findings suggest that Hrk1 plays both Hog1-dependent and –independent roles in stress and antifungal drug susceptibility and virulence factor production in C. neoformans. Particularly, the finding that inhibition of Hrk1 substantially increases azole drug susceptibility provides a novel strategy for combination antifungal therapy

    Inhibition of Expression in Escherichia coli of a Virulence Regulator MglB of Francisella tularensis Using External Guide Sequence Technology

    Get PDF
    External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells

    Comparative Genomics of Bordetella pertussis Reveals Progressive Gene Loss in Finnish Strains

    Get PDF
    BACKGROUND: Bordetella pertussis is a gram-negative bacterium that infects the human respiratory tract and causes pertussis or whooping cough. The disease has resurged in many countries including Finland where the whole-cell pertussis vaccine has been used for more than 50 years. Antigenic divergence has been observed between vaccine strains and clinical isolates in Finland. To better understand genome evolution in B. pertussis circulating in the immunized population, we developed an oligonucleotide-based microarray for comparative genomic analysis of Finnish strains isolated during the period of 50 years. METHODOLOGY/PRINCIPAL FINDINGS: The microarray consisted of 3,582 oligonucleotides (70-mer) and covered 94% of 3,816 ORFs of Tohama I, the strain of which the genome has been sequenced. Twenty isolates from 1953 to 2004 were studied together with two Finnish vaccine strains and two international reference strains. The isolates were selected according to their characteristics, e.g. the year and place of isolation and pulsed-field gel electrophoresis profiles. Genomic DNA of the tested strains, along with reference DNA of Tohama I strain, was labelled and hybridized. The absence of genes as established with microarrays, was confirmed by PCR. Compared with the Tohama I strain, Finnish isolates lost 7 (8.6 kb) to 49 (55.3 kb) genes, clustered in one to four distinct loci. The number of lost genes increased with time, and one third of lost genes had functions related to inorganic ion transport and metabolism, or energy production and conversion. All four loci of lost genes were flanked by the insertion sequence element IS481. CONCLUSION/SIGNIFICANCE: Our results showed that the progressive gene loss occurred in Finnish B. pertussis strains isolated during a period of 50 years and confirmed that B. pertussis is dynamic and is continuously evolving, suggesting that the bacterium may use gene loss as one strategy to adapt to highly immunized populations

    Candida albicans Possesses Sap7 as a Pepstatin A-Insensitive Secreted Aspartic Protease

    Get PDF
    BACKGROUND: Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap), encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. METHODOLOGY/PRINCIPAL FINDINGS: The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. CONCLUSIONS/SIGNIFICANCE: We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis

    Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets.OAIID:RECH_ACHV_DSTSH_NO:T201615370RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A003535CITE_RATE:11.329FILENAME:4. ncomms12766.pdfDEPT_NM:농생명공학부EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/fce63c4a-7de7-4741-996f-d8d24af38905/linkCONFIRM:

    Functional Characterization of an Aspergillus fumigatus Calcium Transporter (PmcA) that Is Essential for Fungal Infection

    Get PDF
    Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5′-CACAGCCAC-3′ and 5′-CCCTGCCCC-3′ sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -B and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The ΔpmcA and ΔpmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the ΔcalA and ΔcrzA mutant strains. However, only the A. fumigatus ΔpmcA was avirulent in the murine model of invasive pulmonary aspergillosis

    Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans

    Get PDF
    Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance.Fundação de Amparo à Pesquisa do Estado de São Paulo (2010/13313–9
    corecore