2,399 research outputs found

    Discovery of a Novel Prolactin in Non-Mammalian Vertebrates: Evolutionary Perspectives and Its Involvement in Teleost Retina Development

    Get PDF
    BACKGROUND:The three pituitary hormones, viz. prolactin (PRL), growth hormone (GH) and somatolactin (SL), together with the mammalian placental lactogen (PL), constitute a gene family of hormones with similar gene structure and encoded protein sequences. These hormones are believed to have evolved from a common ancestral gene through several rounds of gene duplication and subsequent divergence. PRINCIPAL FINDINGS:In this study, we have identified a new PRL-like gene in non-mammalian vertebrates through bioinformatics and molecular cloning means. Phylogenetic analyses showed that this novel protein is homologous to the previously identified PRL. A receptor transactivation assay further showed that this novel protein could bind to PRL receptor to trigger the downstream post-receptor event, indicating that it is biologically active. In view of its close phylogenetic relationship with PRL and also its ability to activate PRL receptor, we name it as PRL2 and the previously identified PRL as PRL1. All the newly discovered PRL2 sequences possess three conserved disulfide linkages with the exception of the shark PRL2 which has only two. In sharp contrast to the classical PRL1 which is predominantly expressed in the pituitary, PRL2 was found to be mainly expressed in the eye and brain of the zebrafish but not in the pituitary. A largely reduced inner nuclear layer of the retina was observed after morpholino knockdown of zebrafish PRL2, indicating its role on retina development in teleost. SIGNIFICANCE:The discovery of this novel PRL has revitalized our understanding on the evolution of the GH/PRL/SL/PL gene family. Its unique expression and functions in the zebrafish eye also provide a new avenue of research on the neuroendocrine control of retina development in vertebrates

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    Precision measurement of the branching fractions of J/psi -> pi+pi-pi0 and psi' -> pi+pi-pi0

    Get PDF
    We study the decays of the J/psi and psi' mesons to pi+pi-pi0 using data samples at both resonances collected with the BES III detector in 2009. We measure the corresponding branching fractions with unprecedented precision and provide mass spectra and Dalitz plots. The branching fraction for J/psi -> pi+pi-pi0 is determined to be (2.137 +- 0.004 (stat.) +0.058-0.056 (syst.) +0.027-0.026 (norm.))*10-2, and the branching fraction for psi' -> pi+pi-pi0 is measured as (2.14 +- 0.03 (stat.) +0.08-0.07 (syst.) +0.09-0.08 (norm.))*10-4. The J/psi decay is found to be dominated by an intermediate rho(770) state, whereas the psi' decay is dominated by di-pion masses around 2.2 GeV/c2, leading to strikingly different Dalitz distributions.Comment: 15 pages, 2 figure

    Higher-order multipole amplitude measurement in ψ(2S)β†’Ξ³Ο‡c2\psi(2S)\to\gamma\chi_{c2}

    Full text link
    Using 106Γ—106106\times10^6 ψ(2S)\psi(2S) events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ(2S)β†’Ξ³Ο‡c2→γππ/Ξ³KK\psi(2S)\to\gamma\chi_{c2}\to\gamma\pi\pi/\gamma KK are measured. A fit to the Ο‡c2\chi_{c2} production and decay angular distributions yields M2=0.046Β±0.010Β±0.013M2=0.046\pm0.010\pm0.013 and E3=0.015Β±0.008Β±0.018E3=0.015\pm0.008\pm0.018, where the first errors are statistical and the second systematic. Here M2M2 denotes the normalized magnetic quadrupole amplitude and E3E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2M2 signal with 4.4Οƒ4.4\sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure

    Reciprocal Interaction between Macrophages and T cells Stimulates IFN-Ξ³ and MCP-1 Production in Ang II-induced Cardiac Inflammation and Fibrosis

    Get PDF
    Background: The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac fibrosis. Methodology/Principal Findings: Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression of interferon c (IFN-c) and leukocytes infiltration into the heart. To determine the role of IFN-c on cardiac inflammation and remodeling, both wild-type (WT) and IFN-c-knockout (KO) mice were infused Ang II for 7 days, and were found an equal blood pressure increase. However, knockout of IFN-c prevented Ang II-induced: 1) infiltration of macrophages and T cells into cardiac tissue; 2) expression of tumor necrosis factor a and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac fibrosis, including the expression of a-smooth muscle actin and collagen I (all p,0.05). Cultured T cells or macrophages alone expressed very low level of IFN-c, however, co-culture of T cells and macrophages increased IFN-c expression by 19.860.95 folds (vs. WT macrophage, p,0.001) and 20.9 6 2.09 folds (vs. WT T cells, p,0.001). In vitro co-culture studies using T cells and macrophages from WT or IFN-c KO mice demonstrated that T cells were primary source for IFN-c production. Co-culture of WT macrophages with WT T cells, but not with IFN-c-knockout T cells, increased IFN-c production (p,0.01). Moreover, IFN-c produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophag

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Evaluating Pillar Industry's Transformation Capability: A Case Study of Two Chinese Steel-Based Cities.

    Get PDF
    Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns
    • …
    corecore