1,650 research outputs found
Optimization of extraction process for enhancement of antioxidant activity of Acer mono bark
Response surface methodology (RSM) was used for finding the optimum extraction condition of Acer mono bark. Twenty experimental conditions were set based on three key variables such as temperature, time and pressure by signalling reaction variables with 5 levels of - 2, - 1, 0, 1, 2 in accordance with central composite design for proceeding extraction and antioxidant tests. The optimized condition for the highest extraction yields was 13.10% at 83.48°C, 54.36 MPa for 13.08 minutes. For DPPH radical scavenging ability, an optimal condition was 92.89% at 88.50°C, 49.69 MPa for 15.08 minutes, and for SOD-like activity 40.69% at 85.21°C, 53.28 MPa for 15.83 minutes. The optimized condition for total polyphenol content was 4.23 mg/g at 81.51°C, 52.92 MPa for 14.79 minutes. The most optimized extraction condition was determined to be at 85°C, 52 MPa for 14 minutes for considering both extraction yield and its biological activities of this plant
Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells
<p>Abstract</p> <p>Background</p> <p>The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (<it>ie</it>., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury. Carbon monoxide, an enzymatic product of heme oxygenase-1, exerts antiapoptotic effects at low concentration <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>Using mouse lung endothelial cells (MLEC), we examined the antiapoptotic potential of carbon monoxide against apoptosis induced by the Fas/CD95-activating antibody (Jo2). Carbon monoxide was applied to cell cultures <it>in vitro</it>. The expression and/or activation of apoptosis-related proteins and signaling intermediates were determined using Western Immunoblot and co-immunoprecipitation assays. Cell death was monitored by lactate dehydrogenase (LDH) release assays. Statistical significance was determined by student T-test and a value of <it>P </it>< 0.05 was considered significant.</p> <p>Results</p> <p>Treatment of MLEC with Fas-activating antibody (Jo2) induced cell death associated with the formation of the DISC, and activation of caspases (-8, -9, and -3), as well as the pro-apoptotic Bcl-2 family protein Bax. Exposure of MLEC to carbon monoxide inhibited Jo2-induced cell death, which correlated with the inhibition of DISC formation, cleavage of caspases-8, -9, and -3, and Bax activation. Carbon monoxide inhibited the phosphorylation of the Fas-associated death domain-containing protein, as well as its association with the DISC. Furthermore, carbon monoxide induced the expression of the antiapoptotic protein FLIP and increased its association with the DISC.</p> <p>CO-dependent cytoprotection against Fas mediated apoptosis in MLEC depended in part on activation of ERK1/2-dependent signaling.</p> <p>Conclusions</p> <p>Carbon monoxide has been proposed as a potential therapy for lung and other diseases based in part on its antiapoptotic effects in endothelial cells. In vitro, carbon monoxide may inhibit both Fas/caspase-8 and Bax-dependent apoptotic signaling pathways induced by Fas-activating antibody in endothelial cells. Strategies to block Fas-dependent apoptotic pathways may be useful in development of therapies for lung or vascular disorders.</p
Interaction of testisin with maspin and its impact on invasion and cell death resistance of cervical cancer cells
AbstractPrevious studies have shown that testisin promotes malignant transformation in cancer cells. To define the mechanism of testisin-induced carcinogenesis, we performed yeast two-hybrid analysis and identified maspin, a tumor suppressor protein, as a testisin-interacting molecule. The direct interaction and cytoplasmic co-localization of testisin with maspin was confirmed by immunoprecipitation and confocal analysis, respectively. In cervical cancer cells, maspin modulated cell death and invasion; however, these effects were inhibited by testisin in parallel experiments. Of interest, the doxorubicin resistance was dramatically reduced by testisin knockdown (P=0.016). Moreover, testisin was found to be over-expressed in cervical cancer samples as compared to matched normal cervical tissues. Thus, we postulate that testisin may promote carcinogenesis by inhibiting tumor suppressor activity of maspin.Structured summaryMINT-7712215, MINT-7712176: Testisin (uniprotkb:Q9Y6M0) binds (MI:0407) to Maspin (uniprotkb:P36952) by pull down (MI:0096)MINT-7712188: Testisin (uniprotkb:Q9Y6M0) and Maspin (uniprotkb:P36952) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7712115: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by two-hybrid (MI:0018)MINT-7712162, MINT-7712128: Maspin (uniprotkb:P36952) physically interacts (MI:0915) with Testisin (uniprotkb:Q9Y6M0) by anti bait co-immunoprecipitation (MI:0006)MINT-7712147: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by anti tag co-immunoprecipitation (MI:0007
Alcohol induces cell proliferation via hypermethylation of ADHFE1 in colorectal cancer cells
BACKGROUND: The hypermethylation of Alcohol dehydrogenase iron containing 1 (ADHFE1) was recently reported to be associated with colorectal cancer (CRC) differentiation. However, the effect of alcohol on ADHFE1 hypermethylation in CRC is still unclear. METHODS: The methylation status and expression levels of ADHFE1 were investigated in primary tumor tissues and adjacent normal tissues of 73 patients with CRC, one normal colon cell line, and 4 CRC cell lines (HT-29, SW480, DLD-1, and LoVo) by quantitative methylation-specific polymerase chain reaction (QMSP) and real-time reverse transcription polymerase chain reaction (real time PCR), respectively. The effect of alcohol on the methylation status of ADHFE1 was analyzed in HT-29, SW480, DLD-1, and CCD18Co cells using QMSP, real-time PCR, immunoblot, and cell proliferation assay. RESULTS: ADHFE1 was hypermethylated in 69 of 73 CRC tissues (95%) compared to adjacent normal tissues (p < 0.05). The mRNA expression of ADHFE1 was significantly reduced in CRC compared to adjacent normal tissues (p < 0.05) and its expression was decreased in the alcohol consumption group (p < 0.05). ADHFE1 was hypermethylated and its expression was decreased in 4 CRC cell lines compared with normal colon cell line. Alcohol induced hypermethylation of ADHFE1, decreased its expression, and stimulated cell proliferation of HT-29, SW480, and DLD-1cells. CONCLUSION: These results demonstrate that the promoter hypermethylation of ADHFE1 is frequently present in CRC and alcohol induces methylation-mediated down expression of ADHFE1 and proliferation of CRC cells
Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry
Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry
Recent Changes in the Clinicopathologic Features of Korean Men with Prostate Cancer: A Comparison with Western Populations
Purpose : The aim of this study was to evaluate the recent changes in the clinicopathologic features of prostate cancer in Korea and to compare these features with those of Western populations.
Materials and methods : We retrospectively reviewed the data of 1582 men undergoing radical prostatectomy for clinically localized prostate cancer between 1995 and 2007 at 10 institutions in Korea for comparison with Western studies. The patients were divided into two groups in order to evaluate the recent clinicopathological changes in prostate cancer: Group 1 had surgery between 1995 and 2003 (n=280) and Group 2 had surgery between 2004 and 2007 (n=1302). The mean follow-up period was 24 months.
Results : Group 1 had a higher prostate-specific antigen level than Group 2 (10.0 ng/mL vs. 7.5 ng/mL, respectively; p<0.001) and a lower proportion of biopsy Gleason scores ≤6 (35.0% vs. 48.1%, respectively; p<0.001). The proportion of patients with clinical T1 stage was higher in Group 2 than in Group 1. Group 1 had a lower proportion of organ-confined disease (59.6% vs. 68.6%; p<0.001) and a lower proportion of Gleason scores ≤6 (21.3% vs. 33.0%; p<0.001), compared to Group 2. However, the relatively higher proportion of pathologic Gleason scores ≤6 in Group 2 was still lower than those of Western men, even though the proportion of organ-confined disease reached to that of Western series.
Conclusion : Korean men with prostate cancer currently present better clinicopathologic parameters. However, in comparison, Korean men still show relatively worse pathologic Gleason scores than Western men.ope
- …