344 research outputs found

    Impaired bone marrow homing of cytokine-activated CD34<sup>+</sup> cells in the NOD/SCID model

    Get PDF
    The reduced engraftment potential of hematopoietic stem/progenitor cells (HSPCs) after exposure to cytokines may be related to the impaired homing ability of actively cycling cells. We tested this hypothesis by quantifying the short-term horning of human adult CD34+ cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) animals. We show that the loss of engraftment ability of cytokine-activated CD34+ cells is associated with a reduction in homing of colony-forming cells (CFCs) to bone marrow (BM) at 24 hours after transplantation (from median 2.8% [range, 1.9%-6.1%] to 0.3% [0.0%-0.7%]; n = 3; P < .01), coincident with an increase in CFC accumulation in the lungs (P < .01). Impaired BM homing of cytokine-activated cells was not restored by using sorted cells in G 0G1 or by inducing cell cycle arrest at the G 1/S border. Blocking Fas ligation in vivo did not increase the BM homing of cultured cells. Finally, we tested cytokine combinations or culture conditions previously reported to restore the engraftment of cultured cells but did not find that any of these was able to reverse the changes in homing behavior of cytokine-exposed cells. We suggest that these changes in homing and, as a consequence, engraftment result from the increased migratory capacity of infused activated cells, leading to the loss of selectivity of the homing process. © 2004 by The American Society of Hematology

    The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity

    Full text link
    We study the entanglement dynamics of the two two-level atoms coupling with a single-mode polarized cavity field after incorporating the atomic centers of mass classical harmonic vibrations with micro amplitudes and low frequencies. We propose a quantitative vibrant factor to modify the concurrence of the two atoms states. When the vibrant frequencies are very low, we obtain that: (i) the factor depends on the relative vibrant displacements and the initial phases rather than the absolute amplitudes, and reduces the concurrence to three orders of magnitude; (ii) the concurrence increases with the increase of the initial phases; (iii) the frequency of the harmonic vibration can be obtained by measuring the maximal value of the concurrence during a small time. These results indicate that even the extremely weak classical harmonic vibrations can be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias

    Get PDF
    BACKGROUND: Hypospadias is a common inborn error of the male urethral development, for which the aetiology is still elusive. Polymorphic variants in genes involved in the masculinisation of male genitalia, such as the androgen receptor, have been associated with some cases of hypospadias. Co-regulators of the androgen receptor start being acknowledged as possible candidates for hormone-resistance instances, which could account for hypospadias. One such molecule, the protein FKBP52, coded by the FKBP4 gene, has an important physiological role in up-regulating androgen receptor activity, an essential step in the development of the male external genitalia. The presence of hypospadias in mice lacking fkbp52 encouraged us to study the sequence and the expression of FKBP4 in boys with isolated hypospadias. PATIENTS AND METHODS: The expression of FKBP52 in the genital skin of boys with hypospadias and in healthy controls was tested by immunohistochemistry. Mutation screening in the FKBF4 gene was performed in ninety-one boys with non syndromic hypospadias. Additionally, two polymorphisms were typed in a larger cohort. RESULTS: Immunohistochemistry shows epithelial expression of FKBP52 in the epidermis of the penile skin. No apparent difference in the FKBP52 expression was detected in healthy controls, mild or severe hypospadias patients. No sequence variants in the FKBP4 gene have implicated in hypospadias in our study. CONCLUSION: FKBP52 is likely to play a role in growth and development of the male genitalia, since it is expressed in the genital skin of prepubertal boys; however alterations in the sequence and in the expression of the FKBP4 gene are not a common cause of non-syndromic hypospadias

    Hyperglycemic Myocardial Damage Is Mediated by Proinflammatory Cytokine: Macrophage Migration Inhibitory Factor

    Get PDF
    Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD). The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF) and G protein-coupled receptor kinase 2 (GRK2) in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation.83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT) and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose.Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD). The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells.Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF are associated with cardiac dysfunction in diabetic patients, and the MIF effects are mediated by GRK2

    Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging

    Get PDF
    Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously.We performed four studies to develop and test: feasibility, inter-rater reliability, repeatability and external validity. We used T1-weighted MR brain imaging from young and older subjects, obtained on different scanners, and collected mid-thigh MR data.After developing the technique and demonstrating feasibility, we tested it for inter-rater reliability in 40 subjects. Intraclass correlation coefficients (ICC) between raters were 0.99 (95% confidence intervals (CI) 0.98-1.00) for the combined group (trapezius, splenius and semispinalis), 0.92 (CI 0.85-0.96) for obliquus and 0.92 (CI 0.85-0.96) for sternocleidomastoid. The first unrotated principal component explained 72.2% of total neck muscle CSA variance and correlated positively with both right (r = 0.52, p = .001) and left (r = 0.50, p = .002) grip strength. The 14 subjects in the repeatability study had had two MR brain scans on three different scanners. The ICC for between scanner variation for total neck muscle CSA was high at 0.94 (CI 0.86-0.98). The ICCs for within scanner variations were also high, with values of 0.95 (CI 0.86-0.98), 0.97 (CI 0.92-0.99) and 0.96 (CI 0.86-0.99) for the three scanners. The external validity study found a correlation coefficient for total thigh CSA and total neck CSA of 0.88.We present a feasible, valid and reliable method for measuring neck muscle CSA on T1-weighted MR brain scans. Larger studies are needed to validate and apply our technique with subjects differing in age, ethnicity and geographical location

    SEROLOGICAL DETECTION OF HEPATITIS A VIRUS IN FREE-RANGING NEOTROPICAL PRIMATES (Sapajus spp., Alouatta caraya) FROM THE PARANÁ RIVER BASIN, BRAZIL

    Get PDF
    Nonhuman primates are considered as the natural hosts of Hepatitis A virus (HAV), as well as other pathogens, and can serve as natural sentinels to investigate epizootics and endemic diseases that are of public health importance. During this study, blood samples were collected from 112 Neotropical primates (NTPs) (Sapajus nigritus and S. cay, n = 75; Alouatta caraya, n = 37) trap-captured at the Paraná River basin, Brazil, located between the States of Paraná and Mato Grosso do Sul. Anti-HAV IgG antibodies were detected in 4.5% (5/112) of NTPs, specifically in 6.7% (5/75) of Sapajus spp. and 0% (0/37) of A. caraya. In addition, all samples were negative for the presence of IgM anti-HAV antibodies. These results suggest that free-ranging NTPs were exposed to HAV within the geographical regions evaluated

    Effect of B7.1 Costimulation on T-Cell Based Immunity against TAP-Negative Cancer Can Be Facilitated by TAP1 Expression

    Get PDF
    Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future
    corecore