274 research outputs found

    An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition

    Get PDF
    Convolutional neural networks (CNNs) with log-mel audio representation and CNN-based end-to-end learning have both been used for environmental event sound recognition (ESC). However, log-mel features can be complemented by features learned from the raw audio waveform with an effective fusion method. In this paper, we first propose a novel stacked CNN model with multiple convolutional layers of decreasing filter sizes to improve the performance of CNN models with either log-mel feature input or raw waveform input. These two models are then combined using the Dempster–Shafer (DS) evidence theory to build the ensemble DS-CNN model for ESC. Our experiments over three public datasets showed that our method could achieve much higher performance in environmental sound recognition than other CNN models with the same types of input features. This is achieved by exploiting the complementarity of the model based on log-mel feature input and the model based on learning features directly from raw waveforms

    Acceleration of Debris Flow Due to Granular Effect

    Get PDF
    Pore water pressure has been recognized as an important factor to enhance the mobility of debris flow moving in channel of very gentle slope. The creation and dissipation of pore water pressure are associated with interaction between grains. This study proposes a physical model for the pressure on mobility of flows with different granular configurations: the flow with overlying coarse-grained layer (i.e., inverse grading) and the flow with fully-mixed grains. The flow velocity is derived by the effective stress principle and the relationship between acceleration and pore water pressure is analyzed under different conditions. The results show that a high excess pore water pressure leads to high velocity of flow, and the pressure increases during the movement; and acceleration increases with time and flow depth under given pore water pressure. Moreover, compared with the flow with mixed grains, the flow with overlying coarse-grained layer is more effective to promote the excess pore water pressure and the liquefaction slip surface. Therefore, the internal drag reduction due to pore water pressure produces an acceleration effect on the flow

    Study of an Oxygen Supply and Oxygen Saturation Monitoring System for Radiation Therapy Associated with the Active Breathing Coordinator

    Get PDF
    Abstract In this study, we designed an oxygen supply and oxygen saturation monitoring (OSOSM) system. This OSOSM system can provide a continuous supply of oxygen and monitor the peripheral capillary oxygen saturation (SpO2) of patients who accept radiotherapy and use an active breathing coordinator (ABC). A clinical test with 27 volunteers was conducted. The volunteers were divided into two groups based on the tendency of SpO2 decline in breath-holding without the OSOSM system: group A (12 cases) showed a decline in SpO2 of less than 2%, whereas the decline in SpO2 in group B (15 cases) was greater than 2% and reached up to 6% in some cases. The SpO2 of most volunteers declined during rest. The breath-holding time of group A without the OSOSM system was significantly longer than that of group B (p < 0.05) and was extended with the OSOSM system by 26.6% and 27.85% in groups A and B, respectively. The SpO2 recovery time was reduced by 36.1%, and the total rest time was reduced by 27.6% for all volunteers using the OSOSM system. In summary, SpO2 declines during breath-holding and rest time cannot be ignored while applying an ABC. This OSOSM system offers a simple and effective way to monitor SpO2 variation and overcome SpO2 decline, thereby lengthening breath-holding time and shortening rest time

    Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016)

    Linking urbanization and the environment: conceptual and empirical advances

    Get PDF
    Urbanization is one of the biggest social transformations of modern time, driving and driven by multiple social, economic, and environmental processes. The impacts of urbanization on the environment are profound, multifaceted and are manifested at the local, regional, and global scale. This article reviews recent advances in conceptual and empirical knowledge linking urbanization and the environment, focusing on six core aspects: air pollution, ecosystems, land use, biogeochemical cycles and water pollution, solid waste management, and the climate. We identify several emerging trends and remaining questions in urban environmental research, including (a) increasing evidence on the amplified or accelerated environmental impacts of urbanization; (b) varying distribution patterns of impacts along geographical and other socio-economic gradients; (c) shifting focus from understanding and quantifying the impacts of urbanization toward understanding the processes and underlying mechanisms; (d) increasing focus on understanding complex interactions and interlinkages among different environmental, social, economic, and cultural processes; and (e) conceptual advances that call for articulating and using a systems approach in cities. In terms of governing the urban environment, there is an increasing focus on public participation and coproduction of knowledge with stakeholders. Cities are actively experimenting toward sustainability under a plethora of guiding concepts that manifests their aspirational goals, with varying levels of implementation and effectiveness

    Magnetic resonance imaging features of bile duct adenoma

    Get PDF
    ObjectivesTo evaluate the magnetic resonance imaging (MRI) features of bile duct adenoma.MethodsThe data of 28 patients [with 32 pathologically confirmed bile duct adenomas, including 15 with malignant change (malignant group) and 17 without malignant change (benign adenoma group)] were retrospectively reviewed. Abdominal MRI was performed for all patients; in addition, dynamic enhanced MRI was performed for 18 lesions. The MRI features, including lesion location, maximum size, morphology, signal characteristics, enhancement type, and appearance of the bile duct, were assessed by two abdominal radiologists. Apparent diffusion coefficient (ADC) values were measured and compared.ResultsOf the 32 bile duct adenomas, 22 (68.75%) involved the common bile duct (CBD). While 14/32 (43.75%) lesions presented as focal eccentric-type masses, 9/32 (28.13%) presented as plaque-like masses, 4/32 (12.50%) as bile duct casting masses, and 5/32 (15.62%) as infiltrative masses. A frond-like superficial appearance was seen in 8/32 (25%) lesions. Infiltrative masses were significantly more common in the malignant group than in the benign adenoma group (P = 0.015). While 23/32 (71.88%) lesions were isointense on T1-weighted imaging (T1WI), 24/32 (75%) were hyperintense on T2-weighted imaging (T2WI). Bile duct dilatation was present upstream of the lesion in all cases. Bile duct dilatation at the lesion was seen in 24/32 (75%) cases and downstream of the lesion in 6/32 (18.75%) cases. Of the 18 lesions that underwent dynamic enhanced MRI, 14 (77.78%) showed moderate enhancement and 13 (72.22%) showed persistent enhancement. On diffusion-weighted imaging (DWI), 27/32 (84.37%) lesions showed hyperintensity. Mean ADC value was comparable between the malignant group and the benign adenoma group (P = 0.156).ConclusionsBile duct adenoma primarily presents as intraductal growth in the CBD, usually with bile duct dilatation at the lesion site or upstream to it. Most lesions are isointense on T1WI, are hyperintense on T2WI and DWI, and show moderate enhancement. A superficial frond-like appearance of the lesion and bile duct dilatation at the lesion or downstream to it might be characteristics of bile duct adenoma. An infiltrative appearance might indicate malignant transformation
    • …
    corecore